Stepped infinite square well potential for collective excitations in even–even nuclei

被引:0
作者
R. Budaca
A. I. Budaca
机构
[1] “Horia Hulubei” National Institute for Physics and Nuclear Engineering,
来源
The European Physical Journal Plus | / 136卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The Bohr Hamiltonian is solved for an infinite square well potential in the axial deformation variable with an adjustable step. The associated spectral characteristics are investigated as a function of the height and the width of the additional step. Experimental realizations of the model are exemplified for 114-124\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{114-124}$$\end{document}Te nuclei.
引用
收藏
相关论文
共 89 条
[1]  
Iachello F(2000)undefined Phys. Rev. Lett. 85 3580-undefined
[2]  
Bonatsos D(2006)undefined Phys. Lett. B 632 238-undefined
[3]  
Lenis D(2005)undefined Phys. Lett. B 621 102-undefined
[4]  
Petrellis D(2004)undefined Phys. Lett. B 588 172-undefined
[5]  
Terziev PA(2016)undefined Phys. Lett. B 759 349-undefined
[6]  
Yigitoglu I(2006)undefined Phys. Lett. B 633 474-undefined
[7]  
Bonatsos D(2004)undefined Phys. Rev. C 70 011304(R)-undefined
[8]  
Lenis D(2002)undefined Phys. Rev. C 65 031304(R)-undefined
[9]  
Petrellis D(2018)undefined Phys. Lett. B 776 26-undefined
[10]  
Terziev PA(2018)undefined EPL 123 42001-undefined