On the Approximation of Certain Mass Distributions Appearing in Distance Geometry

被引:0
作者
G. Larcher
W. Ch. Schmid
R. Wolf
机构
[1] Universität Salzburg,Institut für Mathematik
[2] Universität Salzburg,Institut für Mathematik
[3] Universität Salzburg,Institut für Mathematik
来源
Acta Mathematica Hungarica | 2000年 / 87卷
关键词
Euclidean Distance; Probability Measure; Euclidean Space; Compact Subset; Mass Distribution;
D O I
暂无
中图分类号
学科分类号
摘要
Let X be a compact subset of the n-dimensional Euclidean space Rn. A theorem of G. Björck implies the existence of a unique probability measure μ0 which maximizes the value ∫X∫Xd2(x, y) dμ(x) dμ(y), where μ ranges over all probability measures on X and d2 denotes the Euclidean distance on Rn. In this paper we introduce and investigate an algorithm which is easy to describe and which inductively constructs a sequence ω = x1, x2,... in X such that ω is uniformly distributed with respect to μ0. Geometrical and topological interpretations and applications, and concrete numerical examples are given.
引用
收藏
页码:295 / 316
页数:21
相关论文
共 37 条
[1]  
Alexander R.(1972)On the sum of distances between Acta Math. Hungar. 23 443-448
[2]  
Alexander R.(1975) points on a sphere Pacific J. Math. 56 297-304
[3]  
Alexander R.(1977)Generalized sums of distances Acta Math. Hungar. 29 317-320
[4]  
Alexander R.(1977)On the sum of distances between Proc. Amer. Math. Soc. 64 317-320
[5]  
Alexander R.(1979) points on a sphere. Pacific J. Math. 85 1-9
[6]  
Alexander R.(1974)Two notes on metric geometry Trans. Amer. Math. Soc. 193 1-31
[7]  
Stolarsky K. B.(1958)Metric averaging in Euclidean and Hilbert spaces Ark. Mat. 3 255-269
[8]  
Björck G.(1984)Extremal problems of distance geometry related to energy integrals Math. Chronicle 13 47-58
[9]  
Cleary J.(1986)Distributions of positive mass, which maximize a certain generalized energy integral Amer. Math. Monthly 93 260-275
[10]  
Morris S. A.(1976)Numerical geometry...not numerical topology Israel J. Math. 24 260-268