The Heun–Askey–Wilson Algebra and the Heun Operator of Askey–Wilson Type

被引:0
|
作者
Pascal Baseilhac
Satoshi Tsujimoto
Luc Vinet
Alexei Zhedanov
机构
[1] Université de Tours,Institut Denis
[2] Université d’Orléans Parc de Grammont,Poisson CNRS/UMR 7013
[3] Kyoto University,Department of Applied Mathematics and Physics Graduate School of Informatics
[4] Université de Montréal,Centre de Recherches Mathématiques
[5] Renmin University of China,School of Mathematics
来源
Annales Henri Poincaré | 2019年 / 20卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The Heun–Askey–Wilson algebra is introduced through generators {X,W}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{{\textsf {X}},{\textsf {W}}\}$$\end{document} and relations. These relations can be understood as an extension of the usual Askey–Wilson ones. A central element is given, and a canonical form of the Heun–Askey–Wilson algebra is presented. A homomorphism from the Heun–Askey–Wilson algebra to the Askey–Wilson one is identified. On the vector space of the polynomials in the variable x=z+z-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x=z+z^{-1}$$\end{document}, the Heun operator of Askey–Wilson type realizing W\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textsf {W}}$$\end{document} can be characterized as the most general second-order q-difference operator in the variable z that maps polynomials of degree n in x=z+z-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x=z+z^{-1}$$\end{document} into polynomials of degree n+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n+1$$\end{document}.
引用
收藏
页码:3091 / 3112
页数:21
相关论文
共 50 条