The Heun–Askey–Wilson Algebra and the Heun Operator of Askey–Wilson Type

被引:0
|
作者
Pascal Baseilhac
Satoshi Tsujimoto
Luc Vinet
Alexei Zhedanov
机构
[1] Université de Tours,Institut Denis
[2] Université d’Orléans Parc de Grammont,Poisson CNRS/UMR 7013
[3] Kyoto University,Department of Applied Mathematics and Physics Graduate School of Informatics
[4] Université de Montréal,Centre de Recherches Mathématiques
[5] Renmin University of China,School of Mathematics
来源
Annales Henri Poincaré | 2019年 / 20卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The Heun–Askey–Wilson algebra is introduced through generators {X,W}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{{\textsf {X}},{\textsf {W}}\}$$\end{document} and relations. These relations can be understood as an extension of the usual Askey–Wilson ones. A central element is given, and a canonical form of the Heun–Askey–Wilson algebra is presented. A homomorphism from the Heun–Askey–Wilson algebra to the Askey–Wilson one is identified. On the vector space of the polynomials in the variable x=z+z-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x=z+z^{-1}$$\end{document}, the Heun operator of Askey–Wilson type realizing W\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textsf {W}}$$\end{document} can be characterized as the most general second-order q-difference operator in the variable z that maps polynomials of degree n in x=z+z-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x=z+z^{-1}$$\end{document} into polynomials of degree n+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n+1$$\end{document}.
引用
收藏
页码:3091 / 3112
页数:21
相关论文
共 50 条
  • [1] The Heun-Askey-Wilson Algebra and the Heun Operator of Askey-Wilson Type
    Baseilhac, Pascal
    Tsujimoto, Satoshi
    Vinet, Luc
    Zhedanov, Alexei
    ANNALES HENRI POINCARE, 2019, 20 (09): : 3091 - 3112
  • [2] Diagonalization of the Heun-Askey-Wilson operator, Leonard pairs and the algebraic Bethe ansatz
    Baseilhac, Pascal
    Pimenta, Rodrigo A.
    NUCLEAR PHYSICS B, 2019, 949
  • [3] Degenerate Sklyanin algebras, Askey-Wilson polynomials and Heun operators
    Gaboriaud, Julien
    Tsujimoto, Satoshi
    Vinet, Luc
    Zhedanov, Alexei
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (44)
  • [4] On Askey-Wilson algebra
    Lavrenov, A.
    Czechoslovak Journal of Physics, 47 (12):
  • [5] On Askey-Wilson algebra
    Lavrenov, A
    CZECHOSLOVAK JOURNAL OF PHYSICS, 1997, 47 (12) : 1213 - 1219
  • [6] The Universal Askey-Wilson Algebra
    Terwilliger, Paul
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2011, 7
  • [7] An inverse to the Askey-Wilson operator
    Ismail, MEH
    Rahman, M
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2002, 32 (02) : 657 - 678
  • [8] A Bernstein type inequality for the Askey-Wilson operator
    Li, Xin
    Ranasinghe, Rajitha
    JOURNAL OF APPROXIMATION THEORY, 2019, 240 : 145 - 157
  • [9] A Polynomial Blossom for the Askey–Wilson Operator
    Plamen Simeonov
    Ron Goldman
    Constructive Approximation, 2019, 50 : 19 - 43
  • [10] An Operator Calculus for the Askey-Wilson Operator
    Mourad E.H. Ismail
    Annals of Combinatorics, 2001, 5 (3) : 347 - 362