H+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {H}^+$$\end{document}-multivalued contractions and their application to homotopy theory

被引:0
|
作者
Hemant Kumar Nashine
Ravi P. Agarwal
Zoran Kadelburg
机构
[1] Texas A & M University,Department of Mathematics
[2] University of Belgrade,Faculty of Mathematics
关键词
Contraction; fixed point; multivalued mapping; Pompeiu–Hausdorff metric; homotopy; Primary 47H10; Secondary 54H25;
D O I
10.1007/s11784-017-0425-1
中图分类号
学科分类号
摘要
Kikkawa and Suzuki (Nonlinear Anal 69:2942–2949, 2008) and Kikkawa and Suzuki (Fixed Point Theory Appl, 2008, Art. ID 649749) proved some fixed point results that are generalizations of Kannan’s, Nadler’s and Suzuki’s fixed point theorems. Here, we present fixed point results of this kind for multivalued mappings in the setting of H+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {H}^+$$\end{document}-metric spaces. The theorems provided allow upgrading of some known results which is shown by examples. Moreover, we give a homotopy result as an application of our main theorem.
引用
收藏
页码:2309 / 2325
页数:16
相关论文
共 50 条