Fault-tolerant quantum error correction code preparation in UBQC

被引:0
作者
Qiang Zhao
Qiong Li
Haokun Mao
Xuan Wen
Qi Han
Minghui Li
机构
[1] Harbin Institute of Technology,School of Computer Science and Technology
[2] Harbin Institute of Technology,School of Foreign Language
来源
Quantum Information Processing | 2020年 / 19卷
关键词
Universal blind quantum computation; Weak coherent pulses; Remote blind qubit state preparation; Quantum error correction; Fault-tolerant quantum computation;
D O I
暂无
中图分类号
学科分类号
摘要
The universal blind quantum computation (UBQC) is a scheme to allow a client to delegate a computation to a remote server while concealing the input, output and algorithm. However, the qubit errors are inevitable in the practical application. In this paper, a fault-tolerant quantum error correction code preparation protocol with weak coherent pulses is proposed for fault-tolerant UBQC. Furthermore, the ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document}-correctness and ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document}-blindness of the protocol are fully proven. The simulation results show that the required number of pulses in our protocol is much less than that of the remote blind qubit state preparation protocol with two decoy states in case of the same probability of successful preparation, and is closer to asymptotic case.
引用
收藏
相关论文
共 50 条
  • [41] Theory of quasi-exact fault-tolerant quantum computing and valence-bond-solid codes
    Wang, Dong-Sheng
    Wang, Yun-Jiang
    Cao, Ningping
    Zeng, Bei
    Laflamme, Raymond
    NEW JOURNAL OF PHYSICS, 2022, 24 (02):
  • [42] Advances in quantum error correction based onsuperconducting quantum systems
    Chen, Zi-Jie
    Pan, Xiao-Xuan
    Hua, Zi-Yue
    Wang, Wei-Ting
    Ma, Yu-Wei
    Li, Ming
    Zou, Xu-Bo
    Sun, Lu-Yan
    Zou, Chang-Ling
    ACTA PHYSICA SINICA, 2022, 71 (24)
  • [43] Advances in quantum error correction based on superconducting quantum systems*
    Chen Zi-Jie
    Pan Xiao-Xuan
    Hua Zi-Yue
    Wang Wei-Ting
    Ma Yu-Wei
    Li Ming
    Zou Xu-Bo
    Sun Lu-Yan
    Zou Chang-Ling
    ACTA PHYSICA SINICA, 2022, 71 (24)
  • [44] Encoding an arbitrary state in a [7,1,3] quantum error correction code
    Sidney D. Buchbinder
    Channing L. Huang
    Yaakov S. Weinstein
    Quantum Information Processing, 2013, 12 : 699 - 719
  • [45] Encoding an arbitrary state in a [7,1,3] quantum error correction code
    Buchbinder, Sidney D.
    Huang, Channing L.
    Weinstein, Yaakov S.
    QUANTUM INFORMATION PROCESSING, 2013, 12 (02) : 699 - 719
  • [46] Syndrome measurement order for the [[7,1,3]] quantum error correction code
    Yaakov S. Weinstein
    Quantum Information Processing, 2016, 15 : 1263 - 1271
  • [47] Syndrome measurement order for the [[7,1,3]] quantum error correction code
    Weinstein, Yaakov S.
    QUANTUM INFORMATION PROCESSING, 2016, 15 (03) : 1263 - 1271
  • [48] Pieceable fault tolerant conversion between 5-qubit code and 7-CSS code
    Lin, Chen
    Yang, GuoWu
    Luo, QingBin
    Li, XiaoYu
    QUANTUM INFORMATION PROCESSING, 2020, 19 (08)
  • [49] Quantum error-correcting code for burst error
    Kawabata, S
    QUANTUM COMMUNICATION, COMPUTING, AND MEASUREMENT 3, 2001, : 231 - 234
  • [50] Continuous quantum error correction
    Sarovar, M
    Milburn, GJ
    FLUCTUATIONS AND NOISE IN PHOTONICS AND QUANTUM OPTICS III, 2005, 5846 : 158 - 166