The Busemann theorem for complex p-convex bodies

被引:0
作者
Qingzhong Huang
Binwu He
Guangting Wang
机构
[1] Shanghai University,Department of Mathematics
来源
Archiv der Mathematik | 2012年 / 99卷
关键词
52A20; -convex bodyss; Intersection body; Complex intersection body; Generalized radial ; th mean body; Busemann theorem;
D O I
暂无
中图分类号
学科分类号
摘要
The Busemann theorem states that the intersection body of an origin-symmetric convex body is also convex. In this paper, we prove a version of the Busemann theorem for complex p-convex bodies. Namely that the complex intersection body of an origin-symmetric complex p-convex body is γ-convex for certain γ. The result is the complex analogue of the work of Kim, Yaskin, and Zvavitch on (real) p-convex bodies. Furthermore, we show that the generalized radial qth mean body of a p-convex body is γ-convex for certain γ.
引用
收藏
页码:289 / 299
页数:10
相关论文
共 22 条
[1]  
Abardia J.(2011)Projection bodies in complex vector spaces Adv. Math. 227 830-846
[2]  
Bernig A.(1988)Logarithmically concave functions and sections of convex sets in Studia Math. 88 69-84
[3]  
Ball K.(1949)A theorem on convex bodies of the Brunn-Minkowski type Proc. Nat. Acad. Sci. U.S.A. 35 27-31
[4]  
Busemann H.(2002)The Brunn–Minkowski inequality Bull. Amer. Math. Soc. 39 355-405
[5]  
Gardner R.J.(1998)Affine inequalities and radial mean bodies Amer. J. Math. 120 505-528
[6]  
Gardner R.J.(2011)The geometry of Adv. Math. 226 5320-5337
[7]  
Zhang G.(2011)-convex intersection bodies Arch. Math. 97 91-98
[8]  
Kim J.(2012)Stability of volume comparison for complex convex bodies Proc. Amer. Math. Soc. 140 1709-1717
[9]  
Yaskin V.(2003)Minimal volume of slabs in the complex cube Studia Math. 159 185-194
[10]  
Zvavitch A.(2008)Extremal sections of complex Adv. Math. 218 352-367