Machine-learning abstractions for component-based self-optimizing systems

被引:0
|
作者
Michal Töpfer
Milad Abdullah
Tomáš Bureš
Petr Hnětynka
Martin Kruliš
机构
[1] Charles University,
来源
International Journal on Software Tools for Technology Transfer | 2023年 / 25卷
关键词
Self-adaptation; Ensembles; Machine learning; Heuristics;
D O I
暂无
中图分类号
学科分类号
摘要
This paper features an approach that combines machine-learning abstractions with a component model. We target modern self-optimizing systems and therefore integrate the machine-learning abstractions into our ensemble-based component model DEECo. We further endow the DEECo component model with abstractions for specifying self-optimization heuristics, which address coordination among multiple components. We demonstrate these abstractions in the context of an Industry 4.0 use case. We argue that incorporating machine learning and optimization heuristics is the key feature for modern smart systems, which learn over time and optimize their behavior at runtime to deal with uncertainty in their environment.
引用
收藏
页码:717 / 731
页数:14
相关论文
共 50 条
  • [21] A machine-learning based data-oriented pipeline for Prognosis and Health Management Systems
    Hoffmann Souza, Marcos Leandro
    da Costa, Cristiano Andre
    Ramos, Gabriel de Oliveira
    COMPUTERS IN INDUSTRY, 2023, 148
  • [22] Combining Machine-Learning with Invariants Assurance Techniques for Autonomous Systems
    Mallozzi, Piergiuseppe
    PROCEEDINGS OF THE 2017 IEEE/ACM 39TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING COMPANION (ICSE-C 2017), 2017, : 485 - 486
  • [23] Expdf: Exploits Detection System Based on Machine-Learning
    Zhou, Xin
    Pang, Jianmin
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2019, 12 (02) : 1019 - 1028
  • [24] Machine-learning based vulnerability analysis of existing buildings
    Ruggieri, Sergio
    Cardellicchio, Angelo
    Leggieri, Valeria
    Uva, Giuseppina
    AUTOMATION IN CONSTRUCTION, 2021, 132 (132)
  • [25] Automotive Feature Coordination based on a Machine-Learning Approach
    Dominka, Sven
    Tabrizi, Sarah
    Mandl, Michael
    Duebner, Michael
    2021 IEEE 11TH ANNUAL COMPUTING AND COMMUNICATION WORKSHOP AND CONFERENCE (CCWC), 2021, : 726 - 731
  • [26] Machine-Learning Based TCP Security Action Prediction
    Zhao, Quanling
    Sun, Jiawei
    Ren, Hongjia
    Sun, Guodong
    2020 5TH INTERNATIONAL CONFERENCE ON MECHANICAL, CONTROL AND COMPUTER ENGINEERING (ICMCCE 2020), 2020, : 1325 - 1329
  • [27] Molecular Similarity Perception Based on Machine-Learning Models
    Gandini, Enrico
    Marcou, Gilles
    Bonachera, Fanny
    Varnek, Alexandre
    Pieraccini, Stefano
    Sironi, Maurizio
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (11)
  • [28] Expdf: Exploits Detection System Based on Machine-Learning
    Xin Zhou
    Jianmin Pang
    International Journal of Computational Intelligence Systems, 2019, 12 : 1019 - 1028
  • [29] Prediction of Nucleophilicity and Electrophilicity Based on a Machine-Learning Approach
    Liu, Yidi
    Yang, Qi
    Cheng, Junjie
    Zhang, Long
    Luo, Sanzhong
    Cheng, Jin-Pei
    CHEMPHYSCHEM, 2023, 24 (14)
  • [30] Structure exploration of gallium based on machine-learning potential
    Yu, Yaochen
    Fan, Jiahui
    Lei, Yuefeng
    Niu, Haiyang
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2025, 232 : 239 - 245