Lie, Jordan and proper codimensions of associative algebras

被引:2
作者
Giambruno A. [1 ]
Zaicev M. [2 ]
机构
[1] Dipartimento di Matematica e Applicazioni, Università di Palermo, 90123 Palermo
[2] Department of Algebra, Faculty of Mathematics and Mechanics, Moscow State University
基金
俄罗斯基础研究基金会;
关键词
Codimensions; Exponential growth; Polynomial identity;
D O I
10.1007/s12215-008-0010-y
中图分类号
学科分类号
摘要
We study the exponential rate of growth of the sequence of proper, Lie and Jordan codimensions of an associative algebra. We show that for any finite dimensional associative algebra, the exponential rates of growth can be explicitly computed and are strictly related to the PI-exponent of the algebra. © 2008 Springer-Verlag Italia.
引用
收藏
页码:161 / 171
页数:10
相关论文
共 22 条
[1]  
Bahturin Y.A., Drensky V., Identities of bilinear mappings and graded polynomial identities of matrices, Linear Algebra Appl., 369, pp. 95-112, (2003)
[2]  
Bahturin Y., Mishchenko S., Regev A., On the Lie and associative codimensions growth, Comm. Algebra, 27, pp. 4901-4908, (1999)
[3]  
Berele A., Regev A., Exponential growth for codimensions of some p.i. algebras, J. Algebra, 241, pp. 118-145, (2001)
[4]  
Drensky V., Codimensions of T-ideals and Hilbert series of relatively free algebras, J. Algebra, 91, pp. 1-17, (1984)
[5]  
Drensky V., Free algebras and PI-algebras, Graduate Course in Algebra, (2000)
[6]  
Drensky V., Regev A., Exact asymptotic behaviour of the codimensions of some P.I. algebras, Israel J. Math., 96, pp. 231-242, (1996)
[7]  
Giambruno A., Mishchenko S., Zaicev M., Codimensions of algebras and growth functions, Adv. Math., 217, pp. 1027-1052, (2008)
[8]  
Giambruno A., Regev A., Zaicev M.V., Simple and semisimple Lie algebras and codimension growth, Trans. Amer. Math. Soc., 352, 4, pp. 1935-1946, (2000)
[9]  
Giambruno A., Zaicev M., On codimension growth of finitely generated associative algebras, Adv. Math., 140, pp. 145-155, (1998)
[10]  
Giambruno A., Zaicev M., Exponential codimension growth of P.I. algebras: an exact estimate, Adv. Math., 142, pp. 221-243, (1999)