Shared strategies for β-lactam catabolism in the soil microbiome

被引:0
|
作者
Terence S. Crofts
Bin Wang
Aaron Spivak
Tara A. Gianoulis
Kevin J. Forsberg
Molly K. Gibson
Lauren A. Johnsky
Stacey M. Broomall
C. Nicole Rosenzweig
Evan W. Skowronski
Henry S. Gibbons
Morten O. A Sommer
Gautam Dantas
机构
[1] Washington University in St Louis School of Medicine,Department of Pathology and Immunology
[2] Washington University in St Louis School of Medicine,The Edison Family Center for Genome Sciences and Systems Biology
[3] Wyss Institute for Biologically Inspired Engineering,Novo Nordisk Foundation Center for Biosustainability
[4] Harvard,Department of Molecular Microbiology
[5] US Army Edgewood Chemical Biological Center,Department of Biomedical Engineering
[6] Aberdeen Proving Ground,undefined
[7] Technical University of Denmark,undefined
[8] Washington University in St Louis School of Medicine,undefined
[9] Washington University in St Louis,undefined
[10] Division of Basic Sciences,undefined
[11] Fred Hutchinson Cancer Center,undefined
[12] Seattle,undefined
[13] TMG Biosciences,undefined
[14] LLC,undefined
[15] Austin,undefined
来源
Nature Chemical Biology | 2018年 / 14卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The soil microbiome can produce, resist, or degrade antibiotics and even catabolize them. While resistance genes are widely distributed in the soil, there is a dearth of knowledge concerning antibiotic catabolism. Here we describe a pathway for penicillin catabolism in four isolates. Genomic and transcriptomic sequencing revealed β-lactamase, amidase, and phenylacetic acid catabolon upregulation. Knocking out part of the phenylacetic acid catabolon or an apparent penicillin utilization operon (put) resulted in loss of penicillin catabolism in one isolate. A hydrolase from the put operon was found to degrade in vitro benzylpenicilloic acid, the β-lactamase penicillin product. To test the generality of this strategy, an Escherichia coli strain was engineered to co-express a β-lactamase and a penicillin amidase or the put operon, enabling it to grow using penicillin or benzylpenicilloic acid, respectively. Elucidation of additional pathways may allow bioremediation of antibiotic-contaminated soils and discovery of antibiotic-remodeling enzymes with industrial utility.
引用
收藏
页码:556 / 564
页数:8
相关论文
共 50 条
  • [21] Metal bioavailability and the soil microbiome
    Sullivan, Tarah S.
    Gadd, Geoffrey Michael
    ADVANCES IN AGRONOMY, VOL 155, 2019, 155 : 79 - 120
  • [22] Recommendations for soil microbiome analyses
    P. Nannipieri
    C. R. Penton
    W. Purahong
    M. Schloter
    J. D. van Elsas
    Biology and Fertility of Soils, 2019, 55 : 765 - 766
  • [23] Recommendations for soil microbiome analyses
    Nannipieri, P.
    Penton, C. R.
    Purahong, W.
    Schloter, M.
    van Elsas, J. D.
    BIOLOGY AND FERTILITY OF SOILS, 2019, 55 (08) : 765 - 766
  • [24] Trophic Regulations of the Soil Microbiome
    Thakur, Madhav P.
    Geisen, Stefan
    TRENDS IN MICROBIOLOGY, 2019, 27 (09) : 771 - 780
  • [25] Routes of soil microbiome dispersal
    Ursula Hofer
    Nature Reviews Microbiology, 2022, 20 : 510 - 510
  • [26] Biotechnological Potential of the Soil Microbiome
    Manucharova, N. A.
    Vlasova, A. P.
    Kovalenko, M. A.
    Ovchinnikova, E. A.
    Babenko, A. D.
    Teregulova, G. A.
    Uvarov, G. V.
    Stepanov, A. L.
    MICROBIOLOGY, 2024, 93 (02) : 145 - 148
  • [27] Microbiome shift in degrading soil
    Hofer U.
    Nature Reviews Microbiology, 2022, 20 (7) : 382 - 382
  • [28] Soil type should be shared
    Urka, MC
    JOURNAL OF SOIL AND WATER CONSERVATION, 2002, 57 (01) : 7A - 7A
  • [29] Steering soil microbiome to enhance soil system resilience
    Wang, Likun
    Li, Xiaofang
    CRITICAL REVIEWS IN MICROBIOLOGY, 2019, 45 (5-6) : 743 - 753
  • [30] Anaerobic soil disinfestation: Manipulating the Florida soil microbiome
    Hong, J. C.
    Burelle, N. K.
    McCollum, G.
    Di Gioia, F.
    Butler, D.
    Rosskopf, E. N.
    PHYTOPATHOLOGY, 2019, 109 (10) : 19 - 19