Identifying influential nodes in complex networks based on Neighbours and edges

被引:1
|
作者
Zengzhen Shao
Shulei Liu
Yanyu Zhao
Yanxiu Liu
机构
[1] Shandong Women’s University,School of Data and Computer Science
[2] Shandong Normal University,School of Information Science and Engineering
关键词
Node ranking; Centrality measure; Second-degree neighbor; Importance of edges;
D O I
暂无
中图分类号
学科分类号
摘要
Identifying the influential nodes is one of the research focuses in network information mining. Many centrality measures used to evaluate influence abilities of nodes can’t balance between high accuracy and low time complexity. The NL centrality based on the neighbors and importance of edges is proposed which considers the second-degree neighbor’s impact on the influence of a node and utilizes the connectivity and unsubstitutability of edge to distinguish topological position of a node. In order to evaluate the accuracy of NL centrality, the SIR model is used to simulate the process of virus propagation in four real-world networks. Experiment results of monotonicity, validity and efficiency demonstrate that the NL centrality has a competitive performance in distinguishing the influence of nodes and it is suitable for large-scale networks because of the high efficiency in computation.
引用
收藏
页码:1528 / 1537
页数:9
相关论文
共 50 条
  • [11] Identifying Influential Nodes in Complex Networks Based on Local Effective Distance
    Zhang, Junkai
    Wang, Bin
    Sheng, Jinfang
    Dai, Jinying
    Hu, Jie
    Chen, Long
    INFORMATION, 2019, 10 (10)
  • [12] Identifying influential nodes based on fuzzy local dimension in complex networks
    Wen, Tao
    Jiang, Wen
    CHAOS SOLITONS & FRACTALS, 2019, 119 : 332 - 342
  • [13] Identifying Influential Nodes in Complex Networks Based on Local Neighbor Contribution
    Dai, Jinying
    Wang, Bin
    Sheng, Jinfang
    Sun, Zejun
    Khawaja, Faiza Riaz
    Ullah, Aman
    Dejene, Dawit Aklilu
    Duan, Guihua
    IEEE ACCESS, 2019, 7 : 131719 - 131731
  • [14] Identifying influential nodes based on network representation learning in complex networks
    Wei, Hao
    Pan, Zhisong
    Hu, Guyu
    Zhang, Liangliang
    Yang, Haimin
    Li, Xin
    Zhou, Xingyu
    PLOS ONE, 2018, 13 (07):
  • [15] A Machine Learning Based Framework for Identifying Influential Nodes in Complex Networks
    Zhao, Gouheng
    Jia, Peng
    Huang, Cheng
    Zhou, Anmin
    Fang, Yong
    IEEE ACCESS, 2020, 8 : 65462 - 65471
  • [16] Identifying Influential Nodes of Complex Networks Based on Trust-Value
    Sheng, Jinfang
    Zhu, Jiafu
    Wang, Yayun
    Wang, Bin
    Hou, Zheng'ang
    ALGORITHMS, 2020, 13 (11) : 1 - 15
  • [17] Identifying influential nodes in complex networks based on resource allocation similarity
    Ai, Jun
    He, Tao
    Su, Zhan
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2023, 627
  • [18] Identifying influential nodes based on graph signal processing in complex networks
    Jia, Zhao
    Li, Yu
    Li Jing-Ru
    Peng, Zhou
    CHINESE PHYSICS B, 2015, 24 (05)
  • [19] Identifying influential nodes in complex networks with community structure
    Zhang, Xiaohang
    Zhu, Ji
    Wang, Qi
    Zhao, Han
    KNOWLEDGE-BASED SYSTEMS, 2013, 42 : 74 - 84
  • [20] A novel measure of identifying influential nodes in complex networks
    Lv, Zhiwei
    Zhao, Nan
    Xiong, Fei
    Chen, Nan
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2019, 523 : 488 - 497