The Least Square Solution with the Least Norm to a System of Quaternion Matrix Equations

被引:1
|
作者
Qing-Wen Wang
Xiao-Xiao Yang
Shi-Fang Yuan
机构
[1] Shanghai University,Department of Mathematics
[2] Wuyi University,School of Mathematics and Computational Science
来源
Iranian Journal of Science and Technology, Transactions A: Science | 2018年 / 42卷
关键词
Least-square solution; Matrix equation; Quaternion algebra; Moore–Penrose inverse; 15A03; 15A06; 15A09; 15B33;
D O I
暂无
中图分类号
学科分类号
摘要
We in this paper derive the expression of the least square solution with the least norm to the system of generalized Sylvester quaternion matrix equations A1X=E1,XB1=E2,C1Y=E3,YD1=E4,A2XB2+C2YD2=E5,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} A_1X = E_1 ,\quad XB_1 = E_2, \quad C_1Y = E_3 ,\quad YD_1 = E_4,\quad A_2XB_2+C_2YD_2=E_5, \end{aligned}$$\end{document}where X, Y are unknown quaternion matrices and the others are given quaternion matrices.
引用
收藏
页码:1317 / 1325
页数:8
相关论文
共 50 条
  • [31] The least squares solution of a class of generalized Sylvester-transpose matrix equations with the norm inequality constraint
    Huang, Baohua
    Ma, Changfeng
    JOURNAL OF GLOBAL OPTIMIZATION, 2019, 73 (01) : 193 - 221
  • [32] The least squares solution of a class of generalized Sylvester-transpose matrix equations with the norm inequality constraint
    Baohua Huang
    Changfeng Ma
    Journal of Global Optimization, 2019, 73 : 193 - 221
  • [33] Quaternion keyed Least Square Approximation for image encryption
    Kalaiarasan, D.
    Ahilan, A.
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2022, 43 (04) : 5221 - 5236
  • [34] Least Square Solutions of Generalized Hamiltonian Quaternion Matrices
    Wang, Qing-Wen
    Ding, Yu-Han
    ADVANCES IN MATRIX THEORY AND ITS APPLICATIONS, VOL 1: PROCEEDINGS OF THE EIGHTH INTERNATIONAL CONFERENCE ON MATRIX THEORY AND ITS APPLICATIONS, 2008, : 262 - 265
  • [35] Special arrowhead least squares solution of the quaternion generalized Sylvester matrix equation
    Ding, Wenxv
    Li, Ying
    Wang, Dong
    Wei, Anli
    2021 PROCEEDINGS OF THE 40TH CHINESE CONTROL CONFERENCE (CCC), 2021, : 142 - 147
  • [36] The least squares Bisymmetric solution of quaternion matrix equation A X B = C
    Wang, Dong
    Li, Ying
    Ding, Wenxv
    AIMS MATHEMATICS, 2021, 6 (12): : 13247 - 13257
  • [38] The minimal norm least squares tridiagonal (Anti-)Hermitian solution of the quaternion Stein equation
    Zhao, Yuan
    Li, Ying
    Zhao, Jianli
    Wang, Dong
    2021 PROCEEDINGS OF THE 40TH CHINESE CONTROL CONFERENCE (CCC), 2021, : 159 - 164
  • [39] Hermitian tridiagonal solution with the least norm to quaternionic least squares problem
    Ling, Sitao
    Wang, Minghui
    Wei, Musheng
    COMPUTER PHYSICS COMMUNICATIONS, 2010, 181 (03) : 481 - 488
  • [40] Generalized least square homotopy perturbation solution of fractional telegraph equations
    Kumar, Rakesh
    Koundal, Reena
    Shehzad, Sabir Ali
    COMPUTATIONAL & APPLIED MATHEMATICS, 2019, 38 (04):