Reconstruction of shoulder MRI using deep learning and compressed sensing: a validation study on healthy volunteers

被引:0
作者
Thomas Dratsch
Florian Siedek
Charlotte Zäske
Kristina Sonnabend
Philip Rauen
Robert Terzis
Robert Hahnfeldt
David Maintz
Thorsten Persigehl
Grischa Bratke
Andra Iuga
机构
[1] University of Cologne,Department of Diagnostic and Interventional Radiology
[2] Faculty of Medicine and University Hospital Cologne,undefined
[3] Philips GmbH Market DACH,undefined
[4] Hamburg,undefined
来源
European Radiology Experimental | / 7卷
关键词
Artifacts; Artificial intelligence; Deep learning; Magnetic resonance imaging; Shoulder joint;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [1] Reconstruction of shoulder MRI using deep learning and compressed sensing: a validation study on healthy volunteers
    Dratsch, Thomas
    Siedek, Florian
    Zaeske, Charlotte
    Sonnabend, Kristina
    Rauen, Philip
    Terzis, Robert
    Hahnfeldt, Robert
    Maintz, David
    Persigehl, Thorsten
    Bratke, Grischa
    Iuga, Andra
    EUROPEAN RADIOLOGY EXPERIMENTAL, 2023, 7 (01)
  • [2] Reconstruction of 3D knee MRI using deep learning and compressed sensing: a validation study on healthy volunteers
    Dratsch, Thomas
    Zaeske, Charlotte
    Siedek, Florian
    Rauen, Philip
    Hokamp, Nils Grosse
    Sonnabend, Kristina
    Maintz, David
    Bratke, Grischa
    Iuga, Andra
    EUROPEAN RADIOLOGY EXPERIMENTAL, 2024, 8 (01)
  • [3] Transferring Deep Gaussian Denoiser for Compressed Sensing MRI Reconstruction
    Xie, Zhonghua
    Liu, Lingjun
    IEEE MULTIMEDIA, 2022, 29 (04) : 5 - 13
  • [4] Five-minute knee MRI: An AI-based super resolution reconstruction approach for compressed sensing. A validation study on healthy volunteers
    Terzis, Robert
    Dratsch, Thomas
    Hahnfeldt, Robert
    Basten, Lajos
    Rauen, Philip
    Sonnabend, Kristina
    Weiss, Kilian
    Reimer, Robert
    Maintz, David
    Iuga, Andra-Iza
    Bratke, Grischa
    EUROPEAN JOURNAL OF RADIOLOGY, 2024, 175
  • [5] Efficacy of compressed sensing and deep learning reconstruction for adult female pelvic MRI at 1.5 T
    Ueda, Takahiro
    Yamamoto, Kaori
    Yazawa, Natsuka
    Tozawa, Ikki
    Ikedo, Masato
    Yui, Masao
    Nagata, Hiroyuki
    Nomura, Masahiko
    Ozawa, Yoshiyuki
    Ohno, Yoshiharu
    EUROPEAN RADIOLOGY EXPERIMENTAL, 2024, 8 (01)
  • [6] DEEP RESIDUAL LEARNING FOR COMPRESSED SENSING MRI
    Lee, Dongwook
    Yoo, Jaejun
    Ye, Jong Chul
    2017 IEEE 14TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2017), 2017, : 15 - 18
  • [7] Acceleration of knee magnetic resonance imaging using a combination of compressed sensing and commercially available deep learning reconstruction: a preliminary study
    Hiroyuki Akai
    Koichiro Yasaka
    Haruto Sugawara
    Taku Tajima
    Masaru Kamitani
    Toshihiro Furuta
    Masaaki Akahane
    Naoki Yoshioka
    Kuni Ohtomo
    Osamu Abe
    Shigeru Kiryu
    BMC Medical Imaging, 23
  • [8] Acceleration of knee magnetic resonance imaging using a combination of compressed sensing and commercially available deep learning reconstruction: a preliminary study
    Akai, Hiroyuki
    Yasaka, Koichiro
    Sugawara, Haruto
    Tajima, Taku
    Kamitani, Masaru
    Furuta, Toshihiro
    Akahane, Masaaki
    Yoshioka, Naoki
    Ohtomo, Kuni
    Abe, Osamu
    Kiryu, Shigeru
    BMC MEDICAL IMAGING, 2023, 23 (01)
  • [9] Reconstruction of Compressed Sensing MRI: An Experimental Review among Priors- and Deep Learning- based Algorithms
    Islam, Rafiqul
    2020 2ND INTERNATIONAL CONFERENCE ON SUSTAINABLE TECHNOLOGIES FOR INDUSTRY 4.0 (STI), 2020,
  • [10] Comparison of deep learning-based reconstruction of PROPELLER Shoulder MRI with conventional reconstruction
    Hahn, Seok
    Yi, Jisook
    Lee, Ho-Joon
    Lee, Yedaun
    Lee, Joonsung
    Wang, Xinzeng
    Fung, Maggie
    SKELETAL RADIOLOGY, 2023, 52 (08) : 1545 - 1555