Linear Data Structures for Fast Ray-Shooting amidst Convex Polyhedra

被引:0
作者
Haim Kaplan
Natan Rubin
Micha Sharir
机构
[1] Tel Aviv University,School of Computer Science
[2] New York University,Courant Institute of Mathematical Sciences
来源
Algorithmica | 2009年 / 55卷
关键词
Computational geometry; Lines in space; Convex polyhedra; Ray-shooting;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the problem of ray shooting in a three-dimensional scene consisting of k (possibly intersecting) convex polyhedra with a total of n facets. That is, we want to preprocess them into a data structure, so that the first intersection point of a query ray and the given polyhedra can be determined quickly. We describe data structures that require \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\tilde{O}(n\cdot \mathrm{poly}(k))$\end{document} preprocessing time and storage (where the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\tilde{O}(\cdot)$\end{document} notation hides polylogarithmic factors), and have polylogarithmic query time, for several special instances of the problem. These include the case when the ray origins are restricted to lie on a fixed line ℓ0, but the directions of the rays are arbitrary, the more general case when the supporting lines of the rays pass through ℓ0, and the case of rays orthogonal to some fixed line with arbitrary origins and orientations. We also present a simpler solution for the case of vertical ray-shooting with arbitrary origins. In all cases, this is a significant improvement over previously known techniques (which require Ω(n2) storage, even when k≪n).
引用
收藏
页码:283 / 310
页数:27
相关论文
共 25 条
[1]  
Agarwal P.K.(1993)Ray shooting and parametric search SIAM J. Comput. 22 794-806
[2]  
Matoušek J.(1994)Range searching with semialgebraic sets Discrete Comput. Geom. 11 393-418
[3]  
Agarwal P.K.(1996)Ray shooting amidst convex polyhedra and polyhedral terrains in three dimensions SIAM J. Comput. 25 100-116
[4]  
Matoušek J.(1997)The union of convex polyhedra in three dimensions SIAM J. Comput. 26 1670-1688
[5]  
Agarwal P.K.(1994)Visibility with a moving point of view Algorithmica 11 360-378
[6]  
Sharir M.(2007)Lines and free line segments tangent to arbitrary three-dimensional convex polyhedra SIAM J. Comput. 37 522-551
[7]  
Aronov B.(1993)Ray shooting on triangles in 3-space Algorithmica 9 471-494
[8]  
Sharir M.(1992)Efficient point location in a convex spatial cell complex SIAM J. Comput. 21 267-280
[9]  
Tagansky B.(undefined)undefined undefined undefined undefined-undefined
[10]  
Bern M.(undefined)undefined undefined undefined undefined-undefined