Expansivity and strong structural stability for composition operators on Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document} spaces

被引:0
作者
Martina Maiuriello
机构
[1] Università degli Studi della Campania “Luigi Vanvitelli”,Dipartimento di Matematica e Fisica
关键词
spaces; Composition operators; Expansivity; Shadowing property; Structural stability; 47B33; 37C20; 37B05; 37B65;
D O I
10.1007/s43037-022-00196-4
中图分类号
学科分类号
摘要
In this note, we investigate the two notions of expansivity and strong structural stability for composition operators on Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document} spaces, 1≤p<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le p < \infty$$\end{document}. Necessary and sufficient conditions for such operators to be expansive are provided, both in the general and the dissipative case. We also show that, in the dissipative setting, the shadowing property implies the strong structural stability and we prove that these two notions are equivalent under the extra hypothesis of positive expansivity.
引用
收藏
相关论文
共 37 条
[1]  
Abdenur F(2007)Pseudo-orbit shadowing in the Discrete Contin. Dyn. Syst. 17 223-245
[2]  
Díaz LJ(1937) topology Dokl. Akad. Nauk. SSSR 14 247-250
[3]  
Andronov A(2021)Structurally stable systems Proc. Am. Math. Soc. 149 5255-5266
[4]  
Pontrjagin L(2018)Two problems on weighted shifts in linear dynamics J. Math. Anal. Appl. 465 125-139
[5]  
Bayart F(2020)Topological transitivity and mixing of composition operators Proc. Am. Math. Soc. 148 4351-4360
[6]  
Bayart F(2021)A generalized Grobman–Hartman theorem Ergod. Theory Dyn. Syst. 41 961-980
[7]  
Darji UB(2018)Shadowing and structural stability for operators J. Math. Anal. Appl. 461 796-816
[8]  
Pires B(2020)Expansivity and shadowing in linear dynamics Monatsh. Math. 191 13-35
[9]  
Bernardes NC(2021)Li-Yorke chaos for composition operators on Adv. Math. 387 37-94
[10]  
Messaoudi A(2021)-spaces J. Differ. Equ. 298 68-531