A causal viscous cosmology without singularities

被引:0
作者
Carlos E. Laciana
机构
[1] Universidad de Buenos Aires,Grupo de Física Teórica, Facultad de Ingeniería
来源
General Relativity and Gravitation | 2017年 / 49卷
关键词
Dark energy; Accelerated universe; Relativistic fluid; Causal correction;
D O I
暂无
中图分类号
学科分类号
摘要
An isotropic and homogeneous cosmological model with a source of dark energy is studied. That source is simulated with a viscous relativistic fluid with minimal causal correction. In this model the restrictions on the parameters coming from the following conditions are analized: (a) energy density without singularities along time, (b) scale factor increasing with time, (c) universe accelerated at present time, (d) state equation for dark energy with “w” bounded and close to −1. It is found that those conditions are satisfied for the following two cases. (i) When the transport coefficient (τΠ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau _{\Pi }$$\end{document}), associated to the causal correction, is negative, with the additional restriction ζτΠ>2/3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\zeta \left| \tau _{\Pi }\right| >2/3$$\end{document}, where ζ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\zeta $$\end{document} is the relativistic bulk viscosity coefficient. The state equation is in the “phantom” energy sector. (ii) For τΠ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau _{\Pi }$$\end{document} positive, in the “k-essence” sector. It is performed an exact calculation for the case where the equation of state is constant, finding that option (ii) is favored in relation to (i), because in (ii) the entropy is always increasing, while this does no happen in (i).
引用
收藏
相关论文
共 55 条
[1]  
Padmanabhan T(2005)Particle group collaboration Curr. Sci. 88 1057-1935
[2]  
Perlmutter S(1999)undefined Astrophys. J. 517 565-506
[3]  
Riess AG(1998)undefined Astron. J. 116 1009-378
[4]  
Caldwell RR(2003)undefined Phys. Rev. Lett. 91 071301-496
[5]  
Kamionkowski M(2010)undefined J. Phys. G 37 075021-89
[6]  
Weinberg N(2006)undefined Int. J. Modern Phys. D 15 1753-185
[7]  
Nakamura K(2005)undefined Phys. Rev. D 71 063004-372
[8]  
Copeland EJ(2004)undefined Phys. Rev. D 70 103522-53
[9]  
Sami M(2006)undefined Gen. Relativ. Gravit. 38 495-331
[10]  
Tsujikawa S(1940)undefined Phys. Rev. 58 919-215