Bounded holomorphic functions covering no concentric circles

被引:13
作者
Dubinin V.N. [1 ]
机构
[1] Far Eastern Federal University, Vladivostok
基金
俄罗斯基础研究基金会;
关键词
Boundary Point; Sharp Estimate; Schwarzian Derivative; Arbitrary Real Number; Distortion Theorem;
D O I
10.1007/s10958-015-2406-5
中图分类号
学科分类号
摘要
Growth and distortion theorems for the functions indicated in the title are proved by the symmetrization method. Sharp estimates for the moduli of the functions considered and their derivatives at inner and boundary points are established, and an estimate for the Schwarzian derivative is obtained. Bibliography: 14 titles. © 2015, Springer Science+Business Media New York.
引用
收藏
页码:825 / 831
页数:6
相关论文
共 14 条
[1]  
Hayman W.K., Multivalent Functions, (1994)
[2]  
Frolova A., Levenshtein M., Shoikhet D., Vasil'ev A., Boundary distortion estimates for holomorphic maps, Complex Anal. Oper. Theory, 8, pp. 1129-1149, (2014)
[3]  
Bolotnikov V., Elin M., Shoikhet D., Inequalities for angular derivatives and boundary interpolation, Anal. Math. Phys., 3, pp. 63-96, (2013)
[4]  
Aliyev Azeroglu T., Ornek B.N., A refined Schwarz inequality on the boundary, Complex Var. Elliptic Eq., 58, pp. 571-577, (2013)
[5]  
Lecko A., Uzar B., A note on Julia-Carathéodory theorem for functions with fixed initial coefficients, Proc. Japan Acad., 89, pp. 133-137, (2013)
[6]  
Ornek B.N., Sharpened forms of the Schwarz lemma on the boudary, Bull. Korean Math. Soc., 50, pp. 2053-2059, (2013)
[7]  
Cleanthous G., Growth theorems for holomorphic functions under geometric conditions for the image, Comput. Meth. Funct. Theory, 13, pp. 277-294, (2013)
[8]  
Dubinin V.N., Condenser Capacities and Symmetrization in Geometric Function Theory, (2009)
[9]  
Pouliasis S., Condenser capacity and meromorphic functions, Comput. Meth. Funct. Theory, 11, pp. 237-245, (2011)
[10]  
Dubinin V.N., On the preservation of conformal capacity under meromorphic functions, Zap. Nauchn. Semin. POMI, 392, pp. 67-73, (2011)