Discrete Morse Theory for Computing Cellular Sheaf Cohomology

被引:0
作者
Justin Curry
Robert Ghrist
Vidit Nanda
机构
[1] Duke University,Department of Mathematics
[2] University of Pennsylvania,Department of Mathematics
[3] University of Pennsylvania,Department of Electrical/Systems Engineering
来源
Foundations of Computational Mathematics | 2016年 / 16卷
关键词
Cellular sheaf cohomology; Discrete Morse theory; 55-04; 55N25; 55N30;
D O I
暂无
中图分类号
学科分类号
摘要
Sheaves and sheaf cohomology are powerful tools in computational topology, greatly generalizing persistent homology. We develop an algorithm for simplifying the computation of cellular sheaf cohomology via (discrete) Morse theoretic techniques. As a consequence, we derive efficient techniques for distributed computation of (ordinary) cohomology of a cell complex.
引用
收藏
页码:875 / 897
页数:22
相关论文
共 56 条
[1]  
Alexandroff P(1928)Über den allgemeinen Dimensionsbegriff und seine Beziehungen zur elementaren geometrischen Anschauung Math. Ann. 98 617-635
[2]  
Arai Z(2009)A Database Schema for the Analysis of Global Dynamics of Multiparameter Systems SIAM J. Appl. Dyn. Syst 8 757-789
[3]  
Kalies W(2009)Target enumeration via Euler characteristic integrals SIAM J. Appl. Math. 70 825-844
[4]  
Kokubu H(2010)Euler integration over definable functions Proc. Natl. Acad. Sci. USA 107 9525-9530
[5]  
Mischaikow K(2015)A complexity theory of constructible functions and sheaves Found. Comput. Math. 15 199-279
[6]  
Oka H(2002)Discrete Morse theory for cellular resolutions J. Reine Angew. Math. 543 147-168
[7]  
Pilarczyk Pl(1989)On a theory of computation and complexity over the real numbers: NP-completeness, recursive functions and universal machines Bull. Amer. Math. Soc. (N.S.) 21 1-46
[8]  
Baryshnikov Y(1948)On the imbedding of systems of compacta in simplicial complexes Fund. Math. 35 217-234
[9]  
Ghrist R(2011)Topological persistence for circle-valued maps Discrete and Computational Geometry 50 1-30
[10]  
Baryshnikov Y(2009)Topology and data Bull. Amer. Math. Soc. (N.S.) 46 255-308