On boundedness of solutions of the difference equation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$x_{n+1}=p+\frac{x_{n-1}}{x_{n}}$\end{document} for p<1

被引:0
作者
Taixiang Sun
Xin Wu
Qiuli He
Hongjian Xi
机构
[1] Guangxi University,College of Mathematics and Information Science
[2] Guangxi University,College of Electrical Engineering
[3] Guangxi College of Finance and Economics,Department of Mathematics
关键词
Difference equation; Positive solution; Equilibrium; Boundedness; 37E25; 37B20;
D O I
10.1007/s12190-013-0680-2
中图分类号
学科分类号
摘要
In this paper, we study the difference equation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_{n+1}=p+\frac{x_{n-1}}{x_n}, \quad n=0,1,\ldots, $$\end{document} where initial values x−1,x0∈(0,+∞) and 0<p<1, and obtain the set of all initial values (x−1,x0)∈(0,+∞)×(0,+∞) such that the positive solutions \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\{x_{n}\}_{n=-1}^{\infty}$\end{document} are bounded. This answers the Open problem 4.8.11 proposed by Kulenovic and Ladas (Dynamics of Second Order Rational Difference Equations, with Open Problems and Conjectures, 2002).
引用
收藏
页码:61 / 68
页数:7
相关论文
共 31 条
[1]  
Amleh A.M.(1999)On the recursive sequence J. Math. Anal. Appl. 233 790-798
[2]  
Georgiou D.A.(2006)= J. Differ. Equ. Appl. 12 863-885
[3]  
Grove E.A.(2006)+ J. Differ. Equ. Appl. 12 961-979
[4]  
Ladas G.(2005)/ J. Differ. Equ. Appl. 11 707-719
[5]  
Camouzis E.(2004)When does local asymptotic stability imply global attractivity in rational equations? Appl. Anal. 83 599-606
[6]  
Ladas G.(2005)When does periodicity destroy boundedness in rational equations? J. Math. Anal. Appl. 311 103-111
[7]  
Camouzis E.(2006)Global behavior of solutions of the nonlinear difference equation Appl. Math. Lett. 19 926-930
[8]  
Ladas G.(2004)= J. Math. Anal. Appl. 294 614-620
[9]  
DeVault R.(2005)+ J. Appl. Math. Comput. 18 229-234
[10]  
Kocic V.(2007)/ J. Differ. Equ. Appl. 13 41-46