Positive solutions for double phase problems with combined nonlinearities

被引:0
作者
Zhenhai Liu
Nikolaos S. Papageorgiou
机构
[1] Yulin Normal University,Guangxi Colleges and Universities Key Laboratory of Complex System Optimization and Big Data Processing
[2] Guangxi University for Nationalities,Guangxi Key Laboratory of Hybrid Computation and IC Design Analysis
[3] National Technical University,Department of Mathematics
来源
Positivity | 2022年 / 26卷
关键词
Double phase operator; Concave-convex problem; Positive solution; Fibering function; Natural constraint; 35J15; 35J75;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a double phase Dirichlet problem with a reaction exhibiting the competing effects of a concave (sublinear) term and a parametric convex (superlinear) term. Using the Nehari method, we show that for all small values of the parameter, the problem has at least two positive bounded solutions.
引用
收藏
相关论文
共 41 条
  • [1] Ambrosetti A(1994)Combined effects of concave and convex nonlinearities in some elliptic problems J. Functional Anal. 122 519-543
  • [2] Brezis H(2018)Regularity for general functionals with double phase Calc. Var. 57 1-48
  • [3] Baroni P(2007)A fibering map approach to a semilinear ellptic boundary value problem Electr. J. Diff. Equ. 69 9-404
  • [4] Colombo M(2000)Sobolev versus H Comm. Contemp. Math. 2 385-50
  • [5] Mingione G(2019)lder local minimizers and global multiplicity for some quasilinear elliptic equations Adv. Calc. Var. 195 111739-367
  • [6] Brown KJ(2020)Constant sign and nodal solutions for superlinear double phas problems Nonlinear Anal. 286 32-24
  • [7] Wu TF(2006)Constant Sign solution for double phase problems with superlinear nonlinearity J. Math. Anal. Appl. 24 339-1107
  • [8] Garcia AJ(2020) versus Positivity 42B 1-30
  • [9] Manfredi J(2022) local minimizers and multiplicity results for quasilinear elliptic equations Acta. Math. Sci. 475 1093-560
  • [10] Peral Alonso I(2019)Positive solutions for nonlinear Robin problems with indefinite potential and competing nonlinearities J. Math. Anal. Appl. 90 1-728