On a Batalin–Vilkovisky operator generating higher Koszul brackets on differential forms

被引:0
作者
Ekaterina Shemyakova
机构
[1] University of Toledo,Department of Mathematics
来源
Letters in Mathematical Physics | 2021年 / 111卷
关键词
BV operator; higher Koszul brackets; structure; quantum ; bialgebroid; formal ; -differential operator; quantum Mackenzie-Xu transformation; 53D17; 58C50; 16S32; 53Z05;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce a formal ħ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbar $$\end{document}-differential operator Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta $$\end{document} that generates higher Koszul brackets on the algebra of (pseudo)differential forms on a P∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{\infty }$$\end{document}-manifold. Such an operator was first mentioned by Khudaverdian and Voronov in arXiv:1808.10049. (This operator is an analogue of the Koszul–Brylinski boundary operator ∂P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial _P$$\end{document} which defines Poisson homology for an ordinary Poisson structure.) Here, we introduce Δ=ΔP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta =\Delta _P$$\end{document} by a different method and establish its properties. We show that this BV type operator generating higher Koszul brackets can be included in a one-parameter family of BV type formal ħ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbar $$\end{document}-differential operators, which can be understood as a quantization of the cotangent L∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_{\infty }$$\end{document}-bialgebroid. We obtain symmetric description on both ΠTM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Pi TM$$\end{document} and ΠT∗M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Pi T^*M$$\end{document}. For the purpose of the above, we develop in detail a theory of formal ħ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbar $$\end{document}-differential operators and also of operators acting on densities on dual vector bundles. In particular, we have a statement about operators that can be seen as a quantization of the Mackenzie–Xu canonical diffeomorphism. Another interesting feature is that we are able to introduce a grading, not a filtration, on our algebras of operators. When operators act on objects on vector bundles, we obtain a bi-grading.
引用
收藏
相关论文
共 47 条
[1]  
Bashkirov D(2017)The BV formalism for J. Homotopy Relat. Struct. 12 305-327
[2]  
Voronov AA(1981)-algebras Phys. Lett. 102B 27-31
[3]  
Batalin IA(1983)Gauge algebra and quantization Phys. Rev. D 28 2567-2582
[4]  
Vilkovisky GA(1979)Quantization of gauge theories with linearly dependent generators Soviet J. Nuclear Phys. 30 605-609
[5]  
Batalin IA(1977)Differential forms on supermanifolds Funk. Anal. Pril. 11 70-71
[6]  
Vilkovisky GA(1977)How to integrate differential forms on supermanifolds Funk. Anal. Pril. 11 55-56
[7]  
Berezin FA(1988)Integral forms and Stokes formula on supermanifolds J. Differ. Geom. 28 93-114
[8]  
Bernstein JN(2007)A differential complex for Poisson manifolds Adv. Math. 208 521-548
[9]  
Leites DA(1999)Relative formality theorem and quantisation of coisotropic submanifolds Quart. J. Math. Oxford Ser. (2) 50 417-436
[10]  
Bernstein JN(2019)Transverse measures, the modular class and a cohomology pairing for Lie algebroids Lett. Math. Phys. 109 1907-1937