Nucleon momentum fraction, helicity and transversity from 2+1-flavor lattice QCD

被引:0
作者
Santanu Mondal
Rajan Gupta
Sungwoo Park
Boram Yoon
Tanmoy Bhattacharya
Bálint Joó
Frank Winter
机构
[1] Los Alamos National Laboratory,Center for Nonlinear Studies
[2] Theoretical Division T-2,Los Alamos National Laboratory
[3] Los Alamos National Laboratory,Oak Ridge Leadership Computing Facility
[4] Computer Computational and Statistical Sciences,undefined
[5] Oak Ridge National Laboratory,undefined
[6] Jefferson Lab,undefined
来源
Journal of High Energy Physics | / 2021卷
关键词
Lattice QCD; Lattice Quantum Field Theory;
D O I
暂无
中图分类号
学科分类号
摘要
A detailed analysis of the systematic uncertainties in the calculation of the isovector momentum fraction, 〈x〉u − d, helicity moment, 〈x〉Δu − Δd, and the transversity moment, 〈x〉δu − δd, of the nucleon is presented using high-statistics data on seven ensembles of gauge configurations generated by the JLab/W&M/LANL/MIT collaborations using 2 + 1-flavors of dynamical Wilson-clover quarks. The much higher statistics have facilitated better control over all systematics compared to previous lattice calculations. The least understood systematic — excited-state contamination — is quantified by studying the variation of the results as a function of different estimates of the mass gap of the first excited state, obtained from two- and three-point correlation functions, and as a function of the pion mass Mπ. The final results are obtained using a simultaneous fit in the lattice spacing a, pion mass Mπ and the finite volume parameter MπL keeping leading order corrections. The data show no significant dependence on the lattice spacing and some evidence for finite-volume corrections. Our final results, in the MS¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \overline{\mathrm{MS}} $$\end{document} scheme at 2 GeV, are 〈x〉u − d = 0.155(17)(20), 〈x〉Δu − Δd = 0.183(14)(20) and 〈x〉δu − δd = 0.220(18)(20), where the first error is the overall analysis uncertainty assuming excited-state contributions have been removed, and the second is an additional systematic uncertainty due to possible residual excited-state contributions. These results are consistent with phenomenological global fit values.
引用
收藏
相关论文
共 99 条
  • [1] Dudek J(2012) 12 Eur. Phys. J. A 48 187-undefined
  • [2] Accardi A(2016) 2 + 1 + 1 Eur. Phys. J. A 52 268-undefined
  • [3] Yoon B(2017) 2 + 1 + 1 Phys. Rev. D 96 094508-undefined
  • [4] Cichy K(2019) 2 + 1 Adv. High Energy Phys. 2019 3036904-undefined
  • [5] Constantinou M(2018) = 2 + 1 Prog. Part. Nucl. Phys. 100 107-undefined
  • [6] Lin H-W(2018) 2 + 1 + 1 Phys. Rev. D 98 034503-undefined
  • [7] Gupta R(2020) 〈 Phys. Rev. D 102 054512-undefined
  • [8] Mondal S(1985)〉 Nucl. Phys. B 259 572-undefined
  • [9] Gupta R(1987) = 2 Phys. Lett. B 195 216-undefined
  • [10] Park S(2017) (2 + 1) Phys. Rev. D 95 074508-undefined