Analytic Structure of Many-Body Coulombic Wave Functions

被引:0
作者
Søren Fournais
Maria Hoffmann-Ostenhof
Thomas Hoffmann-Ostenhof
Thomas Østergaard Sørensen
机构
[1] University of Aarhus,Department of Mathematical Sciences
[2] Universität Wien,Fakultät für Mathematik
[3] Universität Wien,Institut für Theoretische Chemie
[4] The Erwin Schrödinger International Institute for Mathematical Physics,Department of Mathematical Sciences
[5] Aalborg University,undefined
来源
Communications in Mathematical Physics | 2009年 / 289卷
关键词
Homogeneous Polynomial; Real Analytic Function; Harmonic Polynomial; Electronic Wavefunctions; Convergent Power Series;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate the analytic structure of solutions of non-relativistic Schrödinger equations describing Coulombic many-particle systems. We prove the following: Let ψ(x) with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\bf x} = (x_{1},\dots, x_{N})\in \mathbb {R}^{3N}}$$\end{document} denote an N-electron wavefunction of such a system with one nucleus fixed at the origin. Then in a neighbourhood of a coalescence point, for which x1 = 0 and the other electron coordinates do not coincide, and differ from 0, ψ can be represented locally as ψ(x) = ψ(1)(x) + |x1|ψ(2)(x) with ψ(1), ψ(2) real analytic. A similar representation holds near two-electron coalescence points. The Kustaanheimo-Stiefel transform and analytic hypoellipticity play an essential role in the proof.
引用
收藏
页码:291 / 310
页数:19
相关论文
共 49 条
[41]  
Kato T.(undefined)undefined undefined undefined undefined-undefined
[42]  
Knauf A.(undefined)undefined undefined undefined undefined-undefined
[43]  
Kustaanheimo P.E.(undefined)undefined undefined undefined undefined-undefined
[44]  
Stiefel E.L.(undefined)undefined undefined undefined undefined-undefined
[45]  
Le Bris C.(undefined)undefined undefined undefined undefined-undefined
[46]  
Lions P.-L.(undefined)undefined undefined undefined undefined-undefined
[47]  
Yserentant H.(undefined)undefined undefined undefined undefined-undefined
[48]  
Yserentant H.(undefined)undefined undefined undefined undefined-undefined
[49]  
Yserentant H.(undefined)undefined undefined undefined undefined-undefined