Analytic Structure of Many-Body Coulombic Wave Functions

被引:0
作者
Søren Fournais
Maria Hoffmann-Ostenhof
Thomas Hoffmann-Ostenhof
Thomas Østergaard Sørensen
机构
[1] University of Aarhus,Department of Mathematical Sciences
[2] Universität Wien,Fakultät für Mathematik
[3] Universität Wien,Institut für Theoretische Chemie
[4] The Erwin Schrödinger International Institute for Mathematical Physics,Department of Mathematical Sciences
[5] Aalborg University,undefined
来源
Communications in Mathematical Physics | 2009年 / 289卷
关键词
Homogeneous Polynomial; Real Analytic Function; Harmonic Polynomial; Electronic Wavefunctions; Convergent Power Series;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate the analytic structure of solutions of non-relativistic Schrödinger equations describing Coulombic many-particle systems. We prove the following: Let ψ(x) with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\bf x} = (x_{1},\dots, x_{N})\in \mathbb {R}^{3N}}$$\end{document} denote an N-electron wavefunction of such a system with one nucleus fixed at the origin. Then in a neighbourhood of a coalescence point, for which x1 = 0 and the other electron coordinates do not coincide, and differ from 0, ψ can be represented locally as ψ(x) = ψ(1)(x) + |x1|ψ(2)(x) with ψ(1), ψ(2) real analytic. A similar representation holds near two-electron coalescence points. The Kustaanheimo-Stiefel transform and analytic hypoellipticity play an essential role in the proof.
引用
收藏
页码:291 / 310
页数:19
相关论文
共 49 条
[1]  
Castella F.(2008)Semiclassical Resolvent Estimates for Schrödinger Operators with Coulomb Singularities Ann. Henri Poincaré 9 775-815
[2]  
Jecko T.(2006)Best Math. Model. Numer. Anal. 40 49-61
[3]  
Knauf A.(2007)-term approximation in electronic structure calculations. I. One-electron reduced density matrix Math. Model. Numer. Anal. 41 261-279
[4]  
Flad H.-J.(2002)Best Comm. Math. Phys. 228 401-415
[5]  
Hackbusch W.(2004)-term approximation in electronic structure calculations. II. Jastrow factors Ark. Mat. 42 87-106
[6]  
Schneider R.(2005)The Electron Density is Smooth Away from the Nuclei Commun. Math. Phys. 255 183-227
[7]  
Flad H.-J.(2007)Analyticity of the density of electronic wavefunctions Ann. Henri Poincaré 8 731-748
[8]  
Hackbusch W.(2008)Sharp Regularity Results for Coulombic Many-Electron Wave Functions Ann. Henri Poincaré 9 1387-1412
[9]  
Schneider R.(1991)Non-Isotropic Cusp Conditions and Regularity of the Electron Density of Molecules at the Nuclei Comm. Math. Phys. 143 17-26
[10]  
Fournais S.(1992)Third Derivative of the One-Electron Density at the Nucleus Comm. Part. Differ. Eq. 17 615-639