Exact solutions and conservation laws of multi Kaup–Boussinesq system with fractional order

被引:0
作者
Komal Singla
M. Rana
机构
[1] Chandigarh University,Department of Mathematics
[2] Thapar Institute of Engineering and Technology,School of Mathematics
来源
Analysis and Mathematical Physics | 2021年 / 11卷
关键词
Fractional multi Kaup–Boussinesq system; Group analysis; Exact solutions; Conservation laws; 26A33; 34A08; 35R11; 76M60; 70S10;
D O I
暂无
中图分类号
学科分类号
摘要
The purpose of the present work is to investigate exact solutions of the fractional order multi Kaup–Boussinesq system with l=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l=2$$\end{document} by using the group invariance approach and power series expansion method. Due to the significance of conserved vectors in terms of integrability and behaviour of nonlinear systems, the conservation laws are also derived by testing the nonlinear self-adjointness.
引用
收藏
相关论文
共 70 条
[1]  
Heydari MH(2020)Numerical treatment of the space-time fractional model of nonlinear advection-diffusion-reaction equation through te Bernstein polynomials Fractals 28 2040001-259
[2]  
Avazzadeh Z(2017)Exact traveling wave solution for local fractional Boussinesq equation in fractal domain Fractals 25 1740006-25
[3]  
Yang Y(2012)Geometrical explanation of the fractional complex transform and derivative chain rule for fractional calculus Phys. Lett. A 376 257-1269
[4]  
Yang XJ(2013)Using a complex transformation to get an exact solution for fractional generalized coupled MKDV and KDV equations Int. J. Basic Appl. Sci. 13 23-1073
[5]  
Machado JAT(2016)Different methods for (3+1)-dimensional space-time fractional modified KdV–Zakharov–Kuznetsov equation Comput. Math. Appl. 71 1259-156
[6]  
Baleanu D(2015)Exp-function method for fractional differential equations Int. J. Nonlinear Sci. Numer. Simul. 1648 370005-733
[7]  
He J(2011)Fractional sub-equation method and its applications to nonlinear fractional PDEs Phys. Lett. A 375 1069-21
[8]  
Elagan S(2016)Solutions to class of linear and nonlinear fractional differential equations Commun. Theor. Phys. 65 127-118
[9]  
Li Z(2016)Consistent Riccati expansion method and its applications to nonlinear partial differential equations Commun. Theor. Phys. 65 177-530
[10]  
Saad M(2020)Symmetries explicit solutions and conservation laws for some time space fractional nonlinear systems Rep. Math. Phys. 86 139-324