Some classes of permutation polynomials of the form b(xq+ax+δ)i(q2-1)d+1+c(xq+ax+δ)j(q2-1)d+1+L(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b(x^q+ax+\delta )^{\frac{i(q^2-1)}{d}+1}+c(x^q+ax+\delta )^{\frac{j(q^2-1)}{d}+1}+L(x)$$\end{document} over Fq2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {{{\mathbb {F}}}}_{q^2}$$\end{document}

被引:4
作者
Danyao Wu
Pingzhi Yuan
机构
[1] Dongguan University of Technology,School of Computer Science and Technology
[2] South China Normal University,School of Mathematics
关键词
Finite field; Polynomial; Permutation polynomial; 11C08; 12E10;
D O I
10.1007/s00200-020-00441-z
中图分类号
学科分类号
摘要
Let q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document} be a prime power and Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {{{\mathbb {F}}}}_q$$\end{document} be a finite field with q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document} elements. In this paper, we employ the AGW criterion to investigate the permutation behavior of some polynomials of the form b(xq+ax+δ)1+i(q2-1)d+c(xq+ax+δ)1+j(q2-1)d+L(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} b(x^q+ax+\delta )^{1+\frac{i(q^2-1)}{d}}+c(x^q+ax+\delta )^{1+\frac{j(q^2-1)}{d}}+L(x) \end{aligned}$$\end{document}over Fq2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {{{\mathbb {F}}}}_{q^2}$$\end{document} with a1+q=1,q≡±1(modd)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a^{1+q}=1, q\equiv \pm 1\pmod {d}$$\end{document} and L(x)=-ax\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L(x)=-ax$$\end{document} or xq-ax.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x^q-ax.$$\end{document} Accordingly, we also present the permutation polynomials of the form b(xq+ax+δ)s-ax\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b(x^q+ax+\delta )^s-ax$$\end{document} by letting c=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c=0$$\end{document} and choosing some special exponent s, which generalize some known results on permutation polynomials of this form.
引用
收藏
页码:135 / 149
页数:14
相关论文
共 86 条
[1]  
Akbary A(2011)On constructing permutations of finite fields Finite Fields Appl. 17 51-67
[2]  
Ghioca D(1967)On the solution of algebraic equations over finite fields Inf. Control 10 553-564
[3]  
Wang Q(2017)Permutation via linear translators Finite Fields Appl. 45 19-42
[4]  
Berlekamp ER(2013)Optimal ternary cyclic codes from monomials IEEE Trans. Inf. Theory 59 5898-5904
[5]  
Rumsey H(2006)A family of skew Hadamard difference sets J. Comb. Theory Ser. A 113 1526-1535
[6]  
Solomon G(2018)Further results on permutation polynomials of the form Finite Fields Appl. 50 196-208
[7]  
Cepak N(2003) over Finite Fields Appl. 9 187-193
[8]  
Charpin P(2007)New Kloostermans sums identities over Finite Fields Appl. 13 58-70
[9]  
Pasalic E(2013) for all Finite Fields Appl. 22 16-23
[10]  
Ding C(2017)Permutation polynomial and applications to coding theory Finite Fields Appl. 43 69-85