Abundant optical structures of the (2 + 1)-D stochastic chiral nonlinear Schrödinger equation

被引:0
作者
Saima Arshed
Nauman Raza
Mustafa Inc
Kashif Ali Khan
机构
[1] University of the Punjab,Department of Mathematics
[2] Firat University,Department of Mathematics
[3] China Medical University,Department of Medical Research
[4] University of Engineering and Technology,Department of Mathematics
来源
Optical and Quantum Electronics | 2023年 / 55卷
关键词
-expansion; -expansion approach; Solitons;
D O I
暂无
中图分类号
学科分类号
摘要
The current study deals with the exact results of the (2+1)-dimensional stochastic chiral nonlinear Schrödinger equation (SCNLSE). For this, a complex transformation is applied instantly to achieve the imaginary and parts, and then the two efficient integrating techniques such as the G′G,1G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( \frac{G^{ ' }}{G} , \frac{1}{G}\right)$$\end{document}-expansion method, tan(ϕ(ξ)2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tan (\frac{\phi (\xi )}{2})$$\end{document}-expansion approach is implemented to obtain new periodic solutions, hyperbolic solutions, and rational solutions. Most important, the influence of the multiplicative noise on the results of SCNLSE will be disseminated. In addition, 3D plots of a few of the solutions acquired are shown in this work to corroborate our findings.
引用
收藏
相关论文
共 85 条
  • [31] Srivastava R(undefined)undefined undefined undefined undefined-undefined
  • [32] Kumar S(undefined)undefined undefined undefined undefined-undefined
  • [33] Singh D(undefined)undefined undefined undefined undefined-undefined
  • [34] Nazarzadeh A(undefined)undefined undefined undefined undefined-undefined
  • [35] Mirzazadeh M(undefined)undefined undefined undefined undefined-undefined
  • [36] Raza N(undefined)undefined undefined undefined undefined-undefined
  • [37] Javid A(undefined)undefined undefined undefined undefined-undefined
  • [38] Raza N(undefined)undefined undefined undefined undefined-undefined
  • [39] Zubair A(undefined)undefined undefined undefined undefined-undefined
  • [40] Raza N(undefined)undefined undefined undefined undefined-undefined