Abundant optical structures of the (2 + 1)-D stochastic chiral nonlinear Schrödinger equation

被引:0
作者
Saima Arshed
Nauman Raza
Mustafa Inc
Kashif Ali Khan
机构
[1] University of the Punjab,Department of Mathematics
[2] Firat University,Department of Mathematics
[3] China Medical University,Department of Medical Research
[4] University of Engineering and Technology,Department of Mathematics
来源
Optical and Quantum Electronics | 2023年 / 55卷
关键词
-expansion; -expansion approach; Solitons;
D O I
暂无
中图分类号
学科分类号
摘要
The current study deals with the exact results of the (2+1)-dimensional stochastic chiral nonlinear Schrödinger equation (SCNLSE). For this, a complex transformation is applied instantly to achieve the imaginary and parts, and then the two efficient integrating techniques such as the G′G,1G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( \frac{G^{ ' }}{G} , \frac{1}{G}\right)$$\end{document}-expansion method, tan(ϕ(ξ)2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tan (\frac{\phi (\xi )}{2})$$\end{document}-expansion approach is implemented to obtain new periodic solutions, hyperbolic solutions, and rational solutions. Most important, the influence of the multiplicative noise on the results of SCNLSE will be disseminated. In addition, 3D plots of a few of the solutions acquired are shown in this work to corroborate our findings.
引用
收藏
相关论文
共 85 条
  • [1] Abdelrahman MAE(2020)The impact of multiplicative noise on the solution of the Chiral nonlinear Schrödinger equation Phys. Scr. 95 085222-782
  • [2] Mohammed WW(2020)Nonlinearity contributions on critical MKP equation J. Taibah Univ. Sci. 14 777-241
  • [3] Abdelwahed HG(2014)General traveling wave solutions of the strain wave equation in microstructured solids via the new approach of generalized Alex. Eng. J. 53 233-201
  • [4] Alam MN(2020)-expansion method Symmetry 12 1874-182
  • [5] Akbar MA(2019)Exact solutions of the (2+1)-dimensional stochastic Chiral nonlinear Schrödinger equation Optik 176 198-816
  • [6] Mohyud-Din ST(2015)Conservation laws for optical solitons with anti-cubic and generalized anti-cubic nonlinearities Scie. 350 6257-326
  • [7] Albosaily S(2006)Chiral solitons in a coupled double Peierls chain Phys. Lett. A 359 175-1329
  • [8] Mohammed WW(2016)The Adomian decomposition method for solving partial differential equations of fractal order in finite domains Nonlinear Dyn. 85 813-422
  • [9] Aiyashi MA(2022)Trial solution technique to chiral nonlinear Schrödinger’s equation in (1 + 2)-dimensions Res. Phys. 38 105512-236
  • [10] Abdelrahman MAE(2020)A reduction technique to solve the generalized nonlinear dispersive mK(m, n) equation with new local derivative Commun. Theore. Phys. 72 125008-508