Infinitely many fast homoclinic solutions for a class of superquadratic damped vibration systems

被引:0
|
作者
Mohsen Timoumi
机构
[1] Faculty of Sciences of Monastir,
来源
Journal of Elliptic and Parabolic Equations | 2020年 / 6卷
关键词
Damped vibration systems; Fast homoclinic solutions; Variational methods; Symmetric mountain pass theorem; 34J45; 35J61; 58E30;
D O I
暂无
中图分类号
学科分类号
摘要
Consider the following damped vibration system u¨(t)+q(t)u˙(t)-L(t)u(t)+∇W(t,u(t))=0,∀t∈R(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \ddot{u}(t)+q(t)\dot{u}(t)-L(t)u(t)+\nabla W(t,u(t))=0,\ \forall t\in \mathbb {R} \qquad \qquad (1) \end{aligned}$$\end{document}where q∈C(R,R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q\in C(\mathbb {R},\mathbb {R})$$\end{document}, L∈C(R,RN2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L\in C(\mathbb {R},\mathbb {R}^{N^{2}})$$\end{document} and W∈C(R×RN,R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W\in C(\mathbb {R}\times \mathbb {R}^{N},\ \mathbb {R})$$\end{document}. Applying a Symmetric Mountain Pass Theorem, we prove the existence of infinitely many fast homoclinic solutions for (1) when L is not required to be either uniformly positive definite or coercive and W satisfies some general super-quadratic conditions at infinity in the second variable but does not satisfy the classical superquadratic growth conditions at infinity.
引用
收藏
页码:451 / 471
页数:20
相关论文
共 50 条
  • [41] Existence of infinitely many solutions for a class of fractional Hamiltonian systems
    Abderrazek Benhassine
    Journal of Elliptic and Parabolic Equations, 2019, 5 : 105 - 123
  • [42] Infinitely many solutions for class of Neumann quasilinear elliptic systems
    Davood Maghsoodi Shoorabi
    Ghasem Alizadeh Afrouzi
    Boundary Value Problems, 2012
  • [43] Infinitely many solutions for class of Neumann quasilinear elliptic systems
    Shoorabi, Davood Maghsoodi
    Afrouzi, Ghasem Alizadeh
    BOUNDARY VALUE PROBLEMS, 2012,
  • [44] Infinitely many weak solutions for a class of quasilinear elliptic systems
    Bonanno, Gabriele
    Bisci, Giovanni Molica
    O'Regan, Donal
    MATHEMATICAL AND COMPUTER MODELLING, 2010, 52 (1-2) : 152 - 160
  • [45] INFINITELY MANY SOLUTIONS FOR FRACTIONAL SCHRODINGER EQUATION WITH SUPERQUADRATIC CONDITIONS OR COMBINED NONLINEARITIES
    Timoumi, Mohsen
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2020, 57 (04) : 825 - 844
  • [46] Infinitely many homoclinic solutions for the second-order discrete p-Laplacian systems
    Chen, Peng
    Tang, X. H.
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2013, 20 (02) : 193 - 212
  • [47] HOMOCLINIC ORBITS FOR A CLASS OF HAMILTONIAN SYSTEMS WITH SUPERQUADRATIC OR ASYMPTOTICALLY QUADRATIC POTENTIALS
    Wang, Jun
    Xu, Junxiang
    Zhang, Fubao
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2011, 10 (01) : 269 - 286
  • [48] Homoclinic orbits for damped vibration systems with asymptotically quadratic or subquadratic potentials
    Huiwen Chen
    Zhimin He
    Zigen Ouyang
    Maoxin Liao
    Advances in Difference Equations, 2016
  • [49] Homoclinic orbits for damped vibration systems with asymptotically quadratic or subquadratic potentials
    Chen, Huiwen
    He, Zhimin
    Ouyang, Zigen
    Liao, Maoxin
    ADVANCES IN DIFFERENCE EQUATIONS, 2016,
  • [50] Infinitely many solutions for a class of fractional Hamiltonian systems with combined nonlinearities
    Abderrazek Benhassine
    Analysis and Mathematical Physics, 2019, 9 : 289 - 312