Sasakian metrics as generalized η\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta $$\end{document}-Ricci soliton

被引:0
作者
Amalendu Ghosh
机构
[1] Chandernagore College,Department of Mathematics
关键词
Generalized ; -Ricci soliton; -Ricci soliton; Ricci soliton; Contact metric manifold; -Einstein; Contact vector field; Sasakian manifold; 53C25; 53C44; 53D10;
D O I
10.1007/s10998-022-00462-w
中图分类号
学科分类号
摘要
In this paper, we consider Sasakian metric as a proper η\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta $$\end{document}-Ricci almost soliton and prove that it is isometric to a unit sphere S2n+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S^{2n+1}$$\end{document}, provided the dimension of the manifold is greater than 3. Next, we prove that if a Sasakian manifold admitting a generalized η\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta $$\end{document}-Ricci soliton whose potential vector field is a contact vector field is η\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta $$\end{document}-Einstein and the potential vector field is Killing. Finally, we prove that a complete Sasakian manifold of dimension greater than 3 is isometric to a unit sphere if it admits a non-trivial gradient generalized η\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta $$\end{document}-Ricci soliton.
引用
收藏
页码:139 / 151
页数:12
相关论文
共 48 条
[1]  
Alegre P(2004)Generalized Sasakian-space-forms Israel J. Math. 141 157-183
[2]  
Blair DE(2012)Some characterizations for compact almost Ricci solitons Proc. Am. Math. Soc. 140 1033-1040
[3]  
Carriazo A(2014)Compact almost Ricci solitons with constant scalar curvature are gradient Monatsh Math. 174 29-39
[4]  
Barros A(2018)Almost Bull. Belg. Math. Soc. Simon Stevin 25 641-653
[5]  
Ribeiro E(2001)-Ricci solitons in Proc. Amer. Math. Soc. 129 2419-2430
[6]  
Barros A(2006)-manifolds Commun. Math. Phys. 262 177-208
[7]  
Batista R(2012)Einstein manifolds and contact geometry Rev. Roumaine Math. Pures Appl. 57 55-63
[8]  
Ribeiro E(1985)On Nucl. Phys. B 258 46-74
[9]  
Blaga Adara-M(2009)-Einstein Sasakian geometry Tôhoku Math. J. 61 205-212
[10]  
Boyer CP(2010)-Ricci solitons on Hopf hypersurfaces in complex space forms Int. J. Geom. Methods Math. Phys. 7 951-960