On the extremal graphs with respect to the total reciprocal edge-eccentricity

被引:0
作者
Lifang Zhao
Hongshuai Li
Yuping Gao
机构
[1] Lanzhou University,School of Mathematics and Statistics
[2] Zhongshan Overseas Chinese Secondary School,undefined
来源
Journal of Combinatorial Optimization | 2020年 / 39卷
关键词
Total reciprocal edge-eccentricity; Cut vertex; Eccentricity; Degree sequence; 05C69; 05C05;
D O I
暂无
中图分类号
学科分类号
摘要
The total reciprocal edge-eccentricity of a graph G is defined as ξee(G)=∑u∈VGdG(u)εG(u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\xi ^{ee}(G)=\sum _{u\in V_G}\frac{d_G(u)}{\varepsilon _G(u)}$$\end{document}, where dG(u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_G(u)$$\end{document} is the degree of u and εG(u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon _G(u)$$\end{document} is the eccentricity of u. In this paper, we first characterize the unique graph with the maximum total reciprocal edge-eccentricity among all graphs with a given number of cut vertices. Then we determine the k-connected bipartite graphs of order n with diameter d having the maximum total reciprocal edge-eccentricity. Finally, we identify the unique tree with the minimum total reciprocal edge-eccentricity among the n-vertex trees with given degree sequence.
引用
收藏
页码:115 / 137
页数:22
相关论文
共 106 条
[1]  
Behmaram A(2012)Wiener polarity index of fullerenes and hexagonal systems Appl Math Lett 25 1510-1513
[2]  
Yousefi-Azari H(2004)The average eccentricity of a graph and its subgraphs Util Math 65 41-51
[3]  
Ashrafi AR(1994)Degree distance of a graph: a degree analogue of the Wiener index J Chem Inf Comput Sci 34 1082-1086
[4]  
Dankelmann P(2001)Wiener index of trees: theory and applications Acta Appl Math 66 211-249
[5]  
Goddard W(2002)Wiener index of hexagonal systems Acta Appl Math 72 247-294
[6]  
Swart CS(1976)Distance in graphs Czech Math J 26 283-296
[7]  
Dobrynin A(2013)Extremal values on the eccentric distance sum of trees Discrete Appl Math 161 2427-2439
[8]  
Kochetova AA(2017)Hitting times, cover cost, and the Wiener index of a tree J Graph Theory 84 311-326
[9]  
Dobrynin AA(2000)Connective eccentricity index: a novel topological descriptor for predicting biological activity J Mol Graph Model 18 18-25
[10]  
Entriger R(2002)Application of graph theory: relationship of eccentric connectivity index and Wiener’s index with anti-inflammatory activity J Math Anal Appl 266 259-268