Investigations of f(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(R)$$\end{document}-gravity counterparts of the general relativistic shear-free conjecture by illustrative examples

被引:0
作者
Değer Sofuoğlu
Haşim Mutuş
机构
[1] Istanbul University,Department of Physics, Faculty of Science
关键词
-gravity; Gödel type metric; Bianchi type-II and IX models; Shear-free perfect fluid; Rotation ; Tetrad formalism;
D O I
10.1007/s10714-014-1831-y
中图分类号
学科分类号
摘要
By adopting a metric based approach and making use of f(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(R)$$\end{document}-gravity extended tetrad equations, we have considered three spatially homogeneous metrics in order to investigate the existence of simultaneously rotating and expanding solutions of the f(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(R)$$\end{document}-gravity field equations with shear-free perfect fluids as sources. We have shown that the Gödel type expanding universe, as well as a rotating Bianchi-type II spacetime allow no such solutions of the field equations of this modified gravity. On the other hand, we have found that there exist two types of f(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(R)$$\end{document} models in which a shear-free Bianchi-type IX universe can expand and rotate at the same time. The matter content of this universe is described by a perfect fluid having positive or negative pressure, depending on the type of f(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(R)$$\end{document} model and on the cosmological constant; in the particular case of a vanishing cosmological constant we have found that the universe is filled with a pure radiation. Whatsoever the cases, the universe exhibits always coasting anisotropic expansions along three spatial directions evolving like a flat Milne universe, and has a vorticity inversely proportional to cosmic time. A further result is that, due to the nonvanishing of the gravito-magnetic part of the Weyl tensor, this model allows for gravitational waves. Our solution constitutes one more example giving support to that in f(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(R)$$\end{document}-gravity there is no counterpart of the general relativistic shear-free conjecture.
引用
收藏
相关论文
共 86 条
[1]  
Ellis GFR(1967)Dynamics of pressure-free matter in general relativity J. Math. Phys. 29 1171-1194
[2]  
Treciokas R(1971)Isotropic solutions of the Einstein–Boltzmann equations Commun. Math. Phys. 23 1-22
[3]  
Ellis GFR(1957)Homogene scherungsfreie Weltmodelle in der relativistischen Kosmologie Naturwiss 19 507-242
[4]  
Schücking E(1973)Tilted homogeneous cosmological models Commun. Math. Phys. 31 209-1000
[5]  
King AR(1984)Shear-free perfect fluids with zero magnetic Weyl tensor J. Math. Phys. 25 995-337
[6]  
Ellis GFR(1984)A class of shear-free perfect fluids in general relativity I J. Math. Phys. 25 332-199
[7]  
Collins CB(1985)Aspects of shear-free perfect fluids in general relativity J. Math. Phys. 26 2009-855
[8]  
White AJ(1986)Shear-free fluids in general relativity Can. J. Phys. 64 191-1853
[9]  
Collins CB(1988)Homogeneous and hypersurface-homogeneous shear-free perfect fluid in general relativity Gen. Relativ. Gravit. 20 847-1248
[10]  
Collins CB(1987)Shear-free perfect fluids in general relativity. I. Petrov type N Weyl tensor J. Math. Phys. 28 1848-2440