High-Dimensional Fillings in Heisenberg Groups

被引:0
作者
Robert Young
机构
[1] University of Toronto,Department of Mathematics
[2] New York University,Courant Institute of Mathematical Sciences
来源
The Journal of Geometric Analysis | 2016年 / 26卷
关键词
Heisenberg group; Carnot geometry; Sub-Riemannian geometry; Filling inequalities; Dehn functions; Primary 20F65; Secondary 20F18;
D O I
暂无
中图分类号
学科分类号
摘要
We use intersections with horizontal manifolds to show that high-dimensional cycles in the Heisenberg group can be approximated efficiently by simplicial cycles. This lets us calculate all of the higher-order Dehn functions of the Heisenberg groups, thus proving a conjecture of Gromov.
引用
收藏
页码:1596 / 1616
页数:20
相关论文
共 16 条
[1]  
Alonso JM(1999)Higher-dimensional isoperimetric (or Dehn) functions of groups J. Group Theory 2 81-112
[2]  
Wang X(2009)Snowflake groups, Perron–Frobenius eigenvalues and isoperimetric spectra Geom. Topol. 13 141-187
[3]  
Pride SJ(1960)Normal and integral currents Ann. Math. 2 458-520
[4]  
Brady N(1983)Filling Riemannian manifolds J. Differ. Geom. 18 1-147
[5]  
Bridson MR(2013)Contraction of areas vs. topology of mappings Geom. Funct. Anal. 23 1804-1902
[6]  
Forester M(2010)Lipschitz extensions into jet space Carnot groups Math. Res. Lett. 17 1137-1149
[7]  
Shankar K(1999)The deformation theorem for flat chains Acta Math. 183 255-271
[8]  
Federer H(1940)On Ann. Math. 2 809-824
[9]  
Fleming WH(2013)-complexes Groups Geom. Dyn. 7 977-1011
[10]  
Gromov M(undefined)Filling inequalities for nilpotent groups through approximations undefined undefined undefined-undefined