Multiple blowup of solutions for a semilinear heat equation

被引:0
作者
Noriko Mizoguchi
机构
[1] Tokyo Gakugei University,Department of Mathematics
来源
Mathematische Annalen | 2005年 / 331卷
关键词
Cauchy Problem; Heat Equation; Regular Solution; Supremum Norm; Proper Solution;
D O I
暂无
中图分类号
学科分类号
摘要
The present paper is concerned with a Cauchy problem for a semilinear heat equation [inline-graphic not available: see fulltext] with u0 ∈ L∞(RN). A solution u of (P) is said to blow up at t=T<+∞ if  lim supt↗T|u(t)|∞=+∞ with the supremum norm |·|∞ in RN. We show that if [inline-graphic not available: see fulltext] and N≥11, then there exists a proper solution u of (P) which blows up at t=T1, becomes a regular solution for t ∈ (T1,T2) and blows up again at t=T2 for some T1,T2 with 0<T1<T2<+∞.
引用
收藏
页码:461 / 473
页数:12
相关论文
共 13 条
[1]  
Baras undefined(1987)undefined J. Functional Analysis 71 142-undefined
[2]  
Budd undefined(1989)undefined J. Differential Equations 82 207-undefined
[3]  
Dold undefined(1998)undefined Ann. Scuola Norm. Sup. Pisa Cl. Sci. 26 663-undefined
[4]  
Filippas undefined(1992)undefined Commun. Pure Appl. Math. 45 821-undefined
[5]  
Galaktionov undefined(1997)undefined Commun. Pure Appl. Math. 50 1-undefined
[6]  
Herrero undefined(1994)undefined C. R. Acad. Sci. Paris 319 141-undefined
[7]  
Joseph undefined(1973)undefined Arch. Rat. Mech. Anal. 49 241-undefined
[8]  
Lepin undefined(1988)undefined Differentsial’nye Uravneniya 24 1226-undefined
[9]  
Lepin undefined(1990)undefined Mat. Model 2 63-undefined
[10]  
Li undefined(1992)undefined J. Differential Equations 95 304-undefined