Fast and robust estimation of the multivariate errors in variables model

被引:0
作者
Christophe Croux
Mohammed Fekri
Anne Ruiz-Gazen
机构
[1] Leuven Statistics Research Centre,
[2] Institut National des Postes et Télécommunications,undefined
[3] Toulouse School of Economics,undefined
来源
TEST | 2010年 / 19卷
关键词
Errors in variables; Multivariate statistics; Principal components; Projection-pursuit; Robustness; 62G35; 62H99;
D O I
暂无
中图分类号
学科分类号
摘要
In the multivariate errors in variables models, one wishes to retrieve a linear relationship of the form y=βtx+α, where both x and y can be multivariate. The variables y and x are not directly measurable, but observed with measurement error. The classical approach to estimate the multivariate errors in variables model is based on an eigenvector analysis of the joint covariance matrix of the observations. In this paper, a projection-pursuit approach is proposed to estimate the unknown parameters. The focus is on projection indices based on half-samples. These lead to robust estimators which can be computed using fast algorithms. Fisher consistency of the procedure is shown, without the need to make distributional assumptions on the x-variables. A simulation study gives insight into the robustness and the efficiency of the procedure.
引用
收藏
页码:286 / 303
页数:17
相关论文
共 36 条
[1]  
Brown M(1982)Robust line estimation with errors in both variables J Am Stat Assoc 77 71-79
[2]  
Butler RW(1993)Asymptotic for the minimum covariance determinant estimators Ann Stat 21 1385-1400
[3]  
Davies PL(1992)Generalized M-estimators for errors-in variables regression Ann Stat 20 385-397
[4]  
Jhun M(1997)Robust calibration Technometrics 38 401-411
[5]  
Cheng CL(1999)Influence function and efficiency of the minimum covariance determinant scatter matrix estimator J Multivar Anal 71 161-190
[6]  
Van Ness JW(2000)Principal component analysis based on robust estimators of the covariance or correlation matrix: influence function and efficiencies Biometrika 87 603-618
[7]  
Cheng CL(1997)Trimmed Ann Stat 25 553-576
[8]  
Van Ness JW(2004)-means: an attempt to robustify quantizers J Multivar Anal 88 89-108
[9]  
Croux C(1999)Robust weighted orthogonal regression in the errors-in-variables model Ann Stat 27 1061-1079
[10]  
Haesbroeck G(2008)A central limit theorem for multivariate generalized trimmed Ann Stat 36 1324-1345