A Geometrically Nonlinear Cosserat (Micropolar) Curvy Shell Model Via Gamma Convergence

被引:0
|
作者
Maryam Mohammadi Saem
Ionel-Dumitrel Ghiba
Patrizio Neff
机构
[1] Universität Duisburg-Essen,Fakultät für Mathematik
[2] Alexandru Ioan Cuza University of Iaşi,Faculty of Mathematics
[3] Octav Mayer Institute of Mathematics of the Romanian Academy,undefined
来源
Journal of Nonlinear Science | 2023年 / 33卷
关键词
Dimensional reduction; Curved reference configuration; Membrane shell model; Gamma-convergence; Nonlinear scaling; Microrotations; Cosserat theory; Cosserat shell; Micropolar shell; Generalized continua; Multiplicative split; 74A05; 74A60; 74B20; 74G65; 74K20; 74K25; 74Q05;
D O I
暂无
中图分类号
学科分类号
摘要
Using Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document}-convergence arguments, we construct a nonlinear membrane-like Cosserat shell model on a curvy reference configuration starting from a geometrically nonlinear, physically linear three-dimensional isotropic Cosserat model. Even if the theory is of order O(h) in the shell thickness h, by comparison to the membrane shell models proposed in classical nonlinear elasticity, beside the change of metric, the membrane-like Cosserat shell model is still capable of capturing the transverse shear deformation and the Cosserat-curvature due to remaining Cosserat effects. We formulate the limit problem by scaling both unknowns, the deformation and the microrotation tensor, and by expressing the parental three-dimensional Cosserat energy with respect to a fictitious flat configuration. The model obtained via Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document}-convergence is similar to the membrane (no O(h3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(h^3)$$\end{document} flexural terms, but still depending on the Cosserat-curvature) Cosserat shell model derived via a derivation approach, but these two models do not coincide. Comparisons to other shell models are also included.
引用
收藏
相关论文
empty
未找到相关数据