Quantum phase transitions in a bidimensional O(N) × ℤ2 scalar field model

被引:0
作者
Gustavo O. Heymans
Marcus Benghi Pinto
Rudnei O. Ramos
机构
[1] Centro Brasileiro de Pesquisas Físicas,Departamento de Física
[2] Universidade Federal de Santa Catarina,Departamento de Física Teórica
[3] Universidade do Estado do Rio de Janeiro,undefined
来源
Journal of High Energy Physics | / 2022卷
关键词
Field Theories in Lower Dimensions; Global Symmetries;
D O I
暂无
中图分类号
学科分类号
摘要
We analyze the possible quantum phase transition patterns occurring within the O(N) × ℤ2 scalar multi-field model at vanishing temperatures in (1 + 1)-dimensions. The physical masses associated with the two coupled scalar sectors are evaluated using the loop approximation up to second order. We observe that in the strong coupling regime, the breaking O(N) × ℤ2→ O(N), which is allowed by the Mermin-Wagner-Hohenberg-Coleman theorem, can take place through a second-order phase transition. In order to satisfy this no-go theorem, the O(N) sector must have a finite mass gap for all coupling values, such that conformality is never attained, in opposition to what happens in the simpler ℤ2 version. Our evaluations also show that the sign of the interaction between the two different fields alters the transition pattern in a significant way. These results may be relevant to describe the quantum phase transitions taking place in cold linear systems with competing order parameters. At the same time the super-renormalizable model proposed here can turn out to be useful as a prototype to test resummation techniques as well as non-perturbative methods.
引用
收藏
相关论文
共 104 条
  • [1] Rychkov S(2015) 1 + 1 Phys. Rev. D 91 148-undefined
  • [2] Vitale LG(2018) 1 + 1 JHEP 08 2050054-undefined
  • [3] Serone M(2020) ( Mod. Phys. Lett. A 35 149-undefined
  • [4] Spada G(2019)) JHEP 03 184-undefined
  • [5] Villadoro G(2019)( JHEP 05 163-undefined
  • [6] Romatschke P(2021)) + JHEP 07 145-undefined
  • [7] Romatschke P(1973)( Commun. Math. Phys. 33 259-undefined
  • [8] Kadoh D(1973)) Commun. Math. Phys. 31 1133-undefined
  • [9] Kuramashi Y(1966)SO(5) Phys. Rev. Lett. 17 383-undefined
  • [10] Nakamura Y(1967)( Phys. Rev. 158 412-undefined