Fredholm One-Dimensional Boundary-Value Problems with Parameters in Sobolev Spaces

被引:0
作者
O. M. Atlasiuk
V. A. Mikhailets
机构
[1] Ukrainian National Academy of Sciences,Institute of Mathematics
来源
Ukrainian Mathematical Journal | 2019年 / 70卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
For systems of linear differential equations on a compact interval, we analyze the dependence of the solutions of boundary-value problems in the Sobolev spaces W∞n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {W}_{\infty}^n $$\end{document} on a parameter ε. We establish a constructive criterion of continuous dependence of the solutions of these problems on the parameter ε for ε = 0. The rate of convergence of these solutions is determined.
引用
收藏
页码:1677 / 1687
页数:10
相关论文
共 6 条
[1]  
Mikhailets VA(2015)Limit theorem for general one-dimensional boundary-value problems J. Math. Sci. 204 333-342
[2]  
Chekhanova GA(2013)Solutions of one-dimensional boundary-value problems with a parameter in Sobolev spaces J. Math. Sci. 190 589-599
[3]  
Kodlyuk TI(2018)Fredholm one-dimensional boundary-value problems in Sobolev spaces Ukr. Mat. Zh. 70 1324-1333
[4]  
Mikhailets VA(undefined)undefined undefined undefined undefined-undefined
[5]  
Atlasiuk OM(undefined)undefined undefined undefined undefined-undefined
[6]  
Mikhailets VA(undefined)undefined undefined undefined undefined-undefined