Prediction of Stress Increase at Ultimate in Unbonded Tendons Using Sparse Principal Component Analysis

被引:0
作者
Eric McKinney
Minwoo Chang
Marc Maguire
Yan Sun
机构
[1] Utah State University,Department of Mathematics and Statistics
[2] Utah State University,Department of Civil and Environmental Engineering
[3] New Transportation Innovative Research Center,undefined
[4] Korea Railroad Research Institute,undefined
来源
International Journal of Concrete Structures and Materials | 2019年 / 13卷
关键词
Principal Component Analysis; Sparse Principal Component Analysis; unbonded tendons; strand stress increase; LASSO;
D O I
暂无
中图分类号
学科分类号
摘要
While internal and external unbonded tendons are widely utilized in concrete structures, an analytical solution for the increase in unbonded tendon stress at ultimate strength, Δfps\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta f_{ps}$$\end{document}, is challenging due to the lack of bond between strand and concrete. Moreover, most analysis methods do not provide high correlation due to the limited available test data. The aim of this paper is to use advanced statistical techniques to develop a solution to the unbonded strand stress increase problem, which phenomenological models by themselves have done poorly. In this paper, Principal Component Analysis (PCA), and Sparse Principal Component Analysis (SPCA) are employed on different sets of candidate variables, amongst the material and sectional properties from a database of Continuous unbonded tendon reinforced members in the literature. Predictions of Δfps\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta f_{ps}$$\end{document} are made via Principal Component Regression models, and the method proposed, linear models using SPCA, are shown to improve over current models (best case R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R^{2}$$\end{document} of 0.27, measured-to-predicted ratio [λ] of 1.34) with linear equations. These models produced an R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R^{2}$$\end{document} of 0.54, 0.70 and λ of 1.03, and 0.99 for the internal and external datasets respectively.
引用
收藏
相关论文
共 80 条
  • [61] Breen JE(undefined)undefined undefined undefined undefined-undefined
  • [62] Tam A(undefined)undefined undefined undefined undefined-undefined
  • [63] Pannell FN(undefined)undefined undefined undefined undefined-undefined
  • [64] Tibshirani R(undefined)undefined undefined undefined undefined-undefined
  • [65] Yan L(undefined)undefined undefined undefined undefined-undefined
  • [66] Fraser M(undefined)undefined undefined undefined undefined-undefined
  • [67] Elgamal A(undefined)undefined undefined undefined undefined-undefined
  • [68] Fountain T(undefined)undefined undefined undefined undefined-undefined
  • [69] Oliver K(undefined)undefined undefined undefined undefined-undefined
  • [70] Zhang Y(undefined)undefined undefined undefined undefined-undefined