An interpolation theorem for proper holomorphic embeddings

被引:0
作者
Franc Forstnerič
Björn Ivarsson
Frank Kutzschebauch
Jasna Prezelj
机构
[1] University of Ljubljana,Institute of Mathematics, Physics and Mechanics
[2] University of Bern,Institute of Mathematics
来源
Mathematische Annalen | 2007年 / 338卷
关键词
32C22; 32E10; 32H05; 32M17;
D O I
暂无
中图分类号
学科分类号
摘要
Given a Stein manifold x of dimension n > 1, a discrete sequence \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{a_j\}\subset X$$\end{document}, and a discrete sequence \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{b_j\}\subset \mathbb{C}^{m}$$\end{document} where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m\ge N=\left[\frac{3n}{2}\right] + 1$$\end{document}, there exists a proper holomorphic embedding \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\colon X\hookrightarrow \mathbb{C}^{m}$$\end{document} satisfying f(aj) = bj for every j = 1,2,...
引用
收藏
页码:545 / 554
页数:9
相关论文
共 35 条
[1]  
Acquistapace F.(1975)A relative embedding theorem for Stein spaces Ann. Scuola Norm. Sup. Pisa Cl. Sci. 2 507-522
[2]  
Broglia F.(1992)On the group of holomorphic automorphisms of $$\mathbb{C}^n$$ Inventiones Math. 110 371-388
[3]  
Tognoli A.(1961)Mappings of partially analytic spaces Amer. J. Math. 83 209-242
[4]  
Andersén E.(1997)A Carleman type theorem for proper holomorphic embeddings Ark. Mat. 35 157-169
[5]  
Lempert L.(2000)An interpolation theorem for holomorphic automorphisms of $$\mathbb{C}^n$$ J. Geom. Anal. 10 101-108
[6]  
Bishop E.(1992)Embeddings of Stein manifolds Ann. Math. 136 123-135
[7]  
Buzzard G.T.(1970)Plongements des variétés de Stein Comm. Math. Helv. 45 170-184
[8]  
Forstnerič F.(1999)Interpolation by holomorphic automorphisms and embeddings in $$\mathbb{C}^2$$ J. Geom. Anal. 9 93-118
[9]  
Buzzard G.T.(2003)The homotopy principle in complex analysis: a survey Contemp. Math. 332 73-99
[10]  
Forstnerič F.(1996)Non straightenable complex lines in $$\mathbb{C}^2$$ Ark. Mat. 34 97-101