The structure of generalized inverse semigroups

被引:0
作者
Ganna Kudryavtseva
Mark V. Lawson
机构
[1] University of Ljubljana,Faculty of Computer and Information Science
[2] Heriot-Watt University,Department of Mathematics and the Maxwell Institute for Mathematical Sciences
来源
Semigroup Forum | 2014年 / 89卷
关键词
Inverse semigroups; Generalized inverse semigroups; Presheaves of sets;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that the structure of right generalized inverse semigroups is determined by free étale actions of inverse semigroups. This leads to a tensor product interpretation of Yamada’s classical structure theorem for generalized inverse semigroups.
引用
收藏
页码:199 / 216
页数:17
相关论文
共 22 条
[1]  
Afara B.(2013)Morita equivalence of inverse semigroups Period. Math. Hung. 66 119-130
[2]  
Lawson M.V.(2010)The universal covering of an inverse semigroup Appl. Categ. Struct. 18 135-163
[3]  
Funk J.(2012)A refinement of Stone duality to skew Boolean algebras Algebra Univers. 67 397-416
[4]  
Steinberg B.(1975)Cohomology of inverse semigroups J. Algebra 35 273-303
[5]  
Kudryavtseva G.(1996)Enlargements of regular semigroups Proc. Edinb. Math. Soc. 39 425-460
[6]  
Lausch H.(2010)A non-commutative generalization of Stone duality J. Aust. Math. Soc. 88 385-404
[7]  
Lawson M.V.(2011)Morita equivalence of semigroups with local units J. Pure Appl. Algebra 215 455-470
[8]  
Lawson M.V.(2012)Non-commutative Stone duality: inverse semigroups, topological groupoids and Int. J. Algebra Comput. 22 117-170
[9]  
Lawson M.V.(2013)-algebras Adv. Math. 244 82-108
[10]  
Lawson M.V.(2004)Pseudogroups and their étale groupoids Cah. Topol. Géom. Différ. Catég. 45 375-393