Modular derivations for extensions of Poisson algebras

被引:0
作者
Shengqiang Wang
机构
[1] East China University of Science and Technology,Department of Mathematics
来源
Frontiers of Mathematics in China | 2017年 / 12卷
关键词
Poisson algebra; Frobenius Poisson algebra; modular derivation; tensor Poisson algebra; 16E40;
D O I
暂无
中图分类号
学科分类号
摘要
We compute explicitly the modular derivations for Poisson-Ore extensions and tensor products of Poisson algebras.
引用
收藏
页码:209 / 218
页数:9
相关论文
共 11 条
[1]  
Dolgushev V(2009)The Van den Bergh duality and the modular symmetry of a Poisson variety Selecta Math 14 199-228
[2]  
Huebschmann J(1999)Duality for Lie-Rinehart algebras and the modular class J Reine Angew Math 510 103-159
[3]  
Kontsevich M(2003)Deformation quantization of Poisson manifolds Lett Math Phys 66 157-216
[4]  
Lichnerowicz A(1977)Les varieties de Poisson et leurs algebres de Lie associees J Differential Geom 12 253-300
[5]  
Luo J(2015)Twisted Poincaré duality between Poisson homology and Poisson cohomology J Algebra 442 484-505
[6]  
Wang S-Q(2006)Poisson polynomial rings Comm Algebra 34 1265-1277
[7]  
Wu Q-S(2014)On (co)homology of Frobenius Poisson algebras J K-Theory 14 371-386
[8]  
Oh S Q(undefined)undefined undefined undefined undefined-undefined
[9]  
Zhu C(undefined)undefined undefined undefined undefined-undefined
[10]  
Van Oystaeyen F(undefined)undefined undefined undefined undefined-undefined