Interpolation theory of anisotropic finite elements and applications

被引:0
作者
ShaoChun Chen
LiuChao Xiao
机构
[1] Zhengzhou University,Department of Mathematics
来源
Science in China Series A: Mathematics | 2008年 / 51卷
关键词
interpolation theory; anisotropic finite elements; Newton’s formula; divided difference; 65N30;
D O I
暂无
中图分类号
学科分类号
摘要
Interpolation theory is the foundation of finite element methods. In this paper, after reviewing some existed interpolation theorems of anisotropic finite element methods, we present a new way to analyse the interpolation error of anisotropic elements based on Newton’s formula of polynomial interpolation as well as its applications.
引用
收藏
页码:1361 / 1375
页数:14
相关论文
共 20 条
[1]  
Babüska I.(1976)On the angle condition in the finite element method SIAM J Numer Anal 13 214-226
[2]  
Aziz A. K.(1992)Anisotropic interpolation with applications to the finite element method Computing 47 277-293
[3]  
Apel T.(2004)Anisotropic interpolation and quasi-Wilson element for narrow quadrilateral meshes IMA J Numer Anal 24 77-95
[4]  
Dobrowolski M.(1999)The maximum angle condition for mixed and nonconforming element: Application to the Stokes equations SIAM J Numer Anal 37 18-36
[5]  
Chen S. C.(2001)New anisotropic a priori error estimates Numer Math 89 641-667
[6]  
Shi D. Y.(2006)Convergence of rotated Sci China Ser A-Math 36 853-864
[7]  
Zhao Y. C.(2004) element on anisotropic non-inner product type meshes Appl Numer Math 49 135-152
[8]  
Acosta G.(2008)Anisotropic interpolation with application to nonconforming elements SIAM J Numer Anal 46 1442-1453
[9]  
Durán R. G.(2003)Error estimates for the Raviart-Thomas interpolation under the maximum angle condition Numer Math 94 67-92
[10]  
Formaggia L.(undefined)Anisotropic error estimates for elliptic problems undefined undefined undefined-undefined