Self-frequency shift effect on dissipative soliton bound states

被引:0
作者
S. C. V. Latas
M. F. S. Ferreira
机构
[1] University of Aveiro,Department of Physics
来源
Applied Physics B | 2011年 / 105卷
关键词
Soliton; Phase Difference; Landau Equation; Counterclockwise Direction; Dissipative Soliton;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate numerically the impact of the self-frequency shift effect on isolated and bound states of some soliton-like (plain and composite) solutions of the complex Ginzburg–Landau equation. In the absence of the self-frequency shift effect, stable bound states are found for a phase difference of ±π/2 between the constituent plain, respectively, composite, pulses. In the presence of such effect, the corresponding stationary points remain symmetrically located in the interaction plane, but the line joining them is rotated in the counterclockwise direction. Moreover, we verify that one of these points remains a stable stationary point, whereas the other one turns out to be unstable. It is shown that the bound states propagate with the same velocity as the single pulses.
引用
收藏
页码:863 / 869
页数:6
相关论文
共 93 条
[1]  
Mitschke F.M.(1986)undefined Opt. Lett. 11 659-undefined
[2]  
Mollenauer L.F.(1986)undefined Opt. Lett. 11 662-undefined
[3]  
Gordon J.P.(1987)undefined Opt. Lett. 12 355-undefined
[4]  
Mitschke F.M.(2002)undefined IEEE Photonics Technol. Lett. 14 986-undefined
[5]  
Mollenauer L.F.(2008)undefined IEEE J. Sel. Top. Quantum Electron. 14 713-undefined
[6]  
Nishizawa N.(2003)undefined Opt. Express 11 359-undefined
[7]  
Ito Y.(2006)undefined Opt. Express 14 7895-undefined
[8]  
Goto T.(2005)undefined Fiber Integr. Opt. 24 287-undefined
[9]  
Lee J.H.(2001)undefined J. Nonlinear Math. Phys. 8 112-undefined
[10]  
Howe J.(2002)undefined IEEE J. Sel. Top. Quantum Electron. 8 632-undefined