The center of the universal enveloping algebras of small-dimensional nilpotent Lie algebras in prime characteristic

被引:0
作者
Vanderlei Lopes de Jesus
Csaba Schneider
机构
[1] Universidade Federal de Minas Gerais,Departamento de Matemática, Instituto de Ciências Exatas
来源
Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry | 2023年 / 64卷
关键词
Lie algebras; Nilpotent Lie algebras; Universal enveloping algebras; Center; Poisson center; Invariant ring; Poincaré–Birkhoff–Witt Theorem; 17B35; 17B30; 16U70;
D O I
暂无
中图分类号
学科分类号
摘要
We describe the centers of the universal enveloping algebras of nilpotent Lie algebras of dimension at most six over fields of prime characteristic. If the characteristic is not smaller than the nilpontency class, then the center is the integral closure of the algebra generated over the p-center by the same generators that also occur in characteristic zero. Except for three examples, two of which are standard filiform, this algebra is already integrally closed and hence it coincides with the center. In the case of these three exceptional algebras, the center has further generators. Then we show that the center of the universal enveloping algebra of the algebras investigated in this paper is isomorphic to the Poisson center (the algebra of invariants under the adjoint representation). This shows that Braun’s conjecture is valid for this class of Lie algebras.
引用
收藏
页码:243 / 266
页数:23
相关论文
共 16 条
  • [1] Braun Amiram(2007)Factorial properties of the enveloping algebra of a nilpotent Lie algebra in prime characteristic J. Algebra 308 1-11
  • [2] Braun A(2018)The center of the enveloping algebra of the J. Algebra 504 217-290
  • [3] Ben-Shimol O(2013)-Lie algebras J. Algebra 382 203-239
  • [4] Braun A(2009), J. Algebra 322 1830-1858
  • [5] Vernik G(2012), Linear Algebra Appl. 436 163-189
  • [6] Cicalò S(2007), when J. Algebra 309 640-653
  • [7] de Graaf WA(1977) divides Ann. Sci. École Norm. Sup. (4) 10 265-288
  • [8] Schneider C(2003)On Dixmier-Duflo isomorphism in positive characteristic-the classical nilpotent case Lett. Math. Phys. 66 157-216
  • [9] de Graaf WA(2009)On the center and semi-center of enveloping algebras in prime characteristic J. Algebra 321 1293-1312
  • [10] Duflo M(2012)Six-dimensional nilpotent Lie algebras J. Algebra 365 83-113