Equilibrium Solubility of Triclocarban in (Cyclohexane + 1,4-Dioxane) Mixtures: Determination, Correlation, Thermodynamics and Preferential Solvation

被引:0
作者
John Jairo Agredo-Collazos
Claudia Patricia Ortiz
Nestor Enrique Cerquera
Rossember Edén Cardenas-Torres
Daniel Ricardo Delgado
María Ángeles Peña
Fleming Martínez
机构
[1] Universidad Surcolombiana,Maestría en Ingeniería y Gestión Ambiental
[2] Sifati Group Ingeniería S.A.S.,Programa de Administración en Seguridad y Salud en el Trabajo, Grupo de Investigación en Seguridad y Salud en el Trabajo
[3] Grupo de Investigaciones Ciencia,Faculty of Engineering, Agricultural Engineering Program, Hydro Engineering and Agricultural Development Research Group (GHIDA)
[4] Ingeniería e Innovación,Grupo de Fisicoquímica y Análisis Matemático, Facultad de Ciencias y Humanidades
[5] Corporación Universitaria Minuto de Dios-UNIMINUTO,Programa de Ingeniería Civil, Grupo de Investigación de Ingenierías UCC
[6] Universidad Surcolombiana,Neiva, Facultad de Ingeniería
[7] Fundación Universidad de América,Departamento de Ciencias Biomédicas, Facultad de Farmacia
[8] Universidad Cooperativa de Colombia,Grupo de Investigaciones Farmacéutico
[9] Universidad de Alcalá,Fisicoquímicas, Departamento de Farmacia
[10] Universidad Nacional de Colombia,undefined
来源
Journal of Solution Chemistry | 2022年 / 51卷
关键词
Triclocarban; Solubility; (cyclohexane + 1,4-dioxane) mixtures; Dissolution thermodynamics; Preferential solvation;
D O I
暂无
中图分类号
学科分类号
摘要
Equilibrium solubility of triclocarban (TCC) expressed in mole fraction in 1,4-dioxane and cyclohexane, as well, as in 19 {cyclohexane (1) + 1,4-dioxane (2)} mixtures, was determined at seven temperatures from T = (288.15 to 318.15) K. Logarithmic TCC solubility in these cosolvent mixtures was adequately correlated with a lineal bivariate equation as function of both the mixtures composition and temperature. Apparent thermodynamic quantities for the dissolution and mixing processes were computed by means of the van’t Hoff and Gibbs equations observing endothermal and entropy-driven dissolution processes in all cases. The enthalpy–entropy compensation plot of apparent enthalpy vs. apparent Gibbs energy was linear exhibiting positive slope implying enthalpy-driving for TCC transfer from cyclohexane to 1,4-dioxane. Ultimately, by using the inverse Kirkwood–Buff integrals it is observed that TCC is preferentially solvated by cyclohexane molecules in 1,4-dioxane-rich mixtures but preferentially solvated by 1,4-dioxane molecules in cyclohexane-rich mixtures.
引用
收藏
页码:1603 / 1625
页数:22
相关论文
共 165 条
[1]  
Khan R(2018)Biochemical and structural basis of triclosan resistance in a novel enoyl-acyl carrier protein reductase Antimicrob. Agents Chemother. 62 e00648-e718
[2]  
Zeb A(2013)The two functional enoylacyl carrier protein reductases of enterococcus faecalis do not mediate triclosan resistance MBio 4 e00613-13
[3]  
Roy N(2009)Environmental exposure of aquatic and terrestrial biota to triclosan and triclocarban J. Am. Water Resour. Assoc. 45 4-279
[4]  
Magar RT(2014)Triclosan as a surrogate for household biocides: an investigation into biocides in aquatic environments of a highly urbanized region Water Res. 58 269-383
[5]  
Kim HJ(2018)Contamination and risk profiles of triclosan and triclocarban in sediments from a less urbanized region in China J. Hazard. Mater. 357 376-1532
[6]  
Lee KW(2020)Fate, risk and removal of triclocarban: a critical review J. Hazard. Mater. 387 1518-211
[7]  
Lee S-W(2020)Characterization of triclosan and triclocarban in indoor dust from home micro-environments in Vietnam and relevance of non-dietary exposure Sci. Total Environ. 732 189-231
[8]  
Zhu L(2011)A review of personal care products in the aquatic environment: environmental concentrations and toxicity Chemosphere 82 221-304
[9]  
Bi H(2013)Pharmaceuticals and personal care products in the aquatic environment in China: a review J. Hazard. Mater. 262 297-126
[10]  
Ma J(2016)A review of monitoring methods for triclosan and its occurrence in aquatic environments TrAC Trends Anal. Chem. 85 115-1503