Motivic Eilenberg-MacLane spaces

被引:0
作者
Voevodsky V. [1 ]
机构
[1] School of Mathematics, Institute for Advanced Study, Princeton
基金
美国国家科学基金会;
关键词
Full Subcategory; Weak Equivalence; Left Adjoint; Homotopy Category; Symmetric Power;
D O I
10.1007/s10240-010-0024-9
中图分类号
学科分类号
摘要
In this paper we construct symmetric powers in the motivic homotopy categories of morphisms and finite correspondences associated with f-admissible subcategories in the categories of schemes of finite type over a field. Using this construction we provide a description of the motivic Eilenberg-MacLane spaces representing motivic cohomology on some f-admissible categories including the category of semi-normal quasi-projective schemes and, over fields which admit resolution of singularities, on some admissible subcategories including the category of smooth schemes. This description is then used to give a complete computation of the algebra of bistable motivic cohomological operations on smooth schemes over fields of characteristic zero and to obtain partial results on unstable operations which are required for the proof of the Bloch-Kato conjecture. © 2010 IHES and Springer-Verlag.
引用
收藏
页码:1 / 99
页数:98
相关论文
共 41 条
[1]  
Bourbaki N., Deligne P., Saint-Donat B., Théorie des topos et cohomologie étale des schémas. Tome 1: Théorie des topos, 269, (1972)
[2]  
Deglise F., Finite correspondences and transfers over a regular base, Algebraic Cycles and Motives. Vol. 1, 343, pp. 138-205, (2007)
[3]  
Deligne P., Voevodsky's lectures on motivic cohomology 2000/2001, Algebraic Topology, 4, pp. 355-409, (2009)
[4]  
Dugger D., Isaksen D.C., Topological hypercovers and A<sup>1</sup>-realizations, Math. Z., 246, pp. 667-689, (2004)
[5]  
Friedlander E.M., Voevodsky V., Bivariant cycle cohomology, Cycles, Transfers, and Motivic Homology Theories, 143, pp. 138-187, (2000)
[6]  
Fuchs L., Infinite Abelian Groups. Vol. II, 36 II, (1973)
[7]  
Greco S., Traverso C., On seminormal schemes, Compos. Math., 40, pp. 325-365, (1980)
[8]  
Grothendieck A., Dieudonne J., Etude Locale des Schemas et des Morphismes de Schemas (EGA 4), Publ. Math. IHES, pp. 1964-1967
[9]  
Hironaka H., Triangulations of algebraic sets, Algebraic Geometry, pp. 165-185, (1975)
[10]  
Hirschhorn P.S., Model Categories and Their Localizations, 99, (2003)