New Minimum Infinity-Norm Solution and Rapid Eigenaxis Attitude Maneuvering of Spacecraft

被引:0
作者
Hyungjoo Yoon
Jeongin Yun
Jiyoon Hwang
Hyosang Yoon
机构
[1] Korea Aerospace Research Institute,
[2] Korea Advanced Institute of Science and Technology,undefined
[3] Yonsei University,undefined
来源
The Journal of the Astronautical Sciences | 2022年 / 69卷
关键词
Infinity-norm; Linear equations; Minimum norm solution; Reaction-wheel array; Maximum torque; Eigenaxis rotation;
D O I
暂无
中图分类号
学科分类号
摘要
This paper presents a new algorithm for determining the minimum infinity-norm, or L∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_\infty $$\end{document}-norm solution to a system of underdetermined consistent linear equations. This algorithm can be applied to enable rapid attitude maneuvering of spacecraft. Unlike previous algorithms that consider the dual optimization problem, the proposed algorithm solves the control problem directly using the inherent properties of the solution. Therefore, the algorithm is relatively straightforward, easy to understand and implement, and provides more insight into the nature of the problem. Using the proposed algorithm, the maximum torque of a reaction-wheel array along a given direction can be determined in real-time onboard, thus improving the spacecraft’s attitude agility compared with the widely used minimum L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_2$$\end{document}-norm solutions.
引用
收藏
页码:988 / 1016
页数:28
相关论文
共 44 条
[11]  
Salvucci V(2016)A simple approach for predicting time-optimal slew capability Acta Astronaut. 120 159-170
[12]  
Kimura Y(2019)Agility analysis of the James Webb space telescope J. Guid. Control. Dyn. 42 810-821
[13]  
Oh S(1973)A finite algorithm for the minimum SIAM J. Numer. Anal. 10 607-617
[14]  
Hori Y(1974) solution to a system of consistent linear equations SIAM J. Numer. Anal. 11 1151-1165
[15]  
Guo D(1977)An efficient algorithmic procedure for obtaining a minimum J. Approx. Theory 20 57-69
[16]  
Zhang Y(1998)-norm solution to a system of consistent linear equations Robotica 16 193-205
[17]  
Baratcart T(2017)Minimum J. Optim. Theory Appl. 175 510-526
[18]  
Salvucci V(2021) solution of underdetermined systems of linear equations J. Guid. Control. Dyn. 44 1219-1223
[19]  
Koseki T(2002)Stabilized minimum infinity-norm torque solution for redundant manipulators J. Guid. Control. Dyn. 25 96-104
[20]  
Markley FL(undefined)An algorithm for minimum L-infinity solution of under-determined linear systems undefined undefined undefined-undefined