k-Pell Numbers as Product of Two Repdigits

被引:0
作者
Salah Eddine Rihane
机构
[1] University Center of Mila,Department of Mathematics, Institute of Science and Technology
来源
Mediterranean Journal of Mathematics | 2022年 / 19卷
关键词
-Pell numbers; repdigits; linear form in logarithms; reduction method; 11B39; 11J86;
D O I
暂无
中图分类号
学科分类号
摘要
Let k≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge 2$$\end{document}. A generalization of the well-known Pell sequence is the k-Pell sequence. For this sequence the first k terms are 0,…,0,1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0,\ldots ,0,1$$\end{document} and each term afterwards is given by the linear recurrence Pn(k)=2Pn-1(k)+Pn-2(k)+⋯+Pn-k(k).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} P_n^{(k)}=2P_{n-1}^{(k)}+P_{n-2}^{(k)}+\cdots +P_{n-k}^{(k)}. \end{aligned}$$\end{document}In this manuscript, our main objective is to find all k-Pell numbers which are product of two repdigits. This generalizes a result of Erduvan and Keskin (Pell and Pell–Lucas numbers as products of two repdigits, submitted) regarding Pell numbers with the above property.
引用
收藏
相关论文
共 24 条
[1]  
Adegbindin C(2020)Pell and Pell-Lucas numbers as sums of two repdigits Bull. Malays. Math. Sci. Soc. 43 1253-1271
[2]  
Luca F(1969)The equations Q. J. Math. Oxf. Ser. (2) 20 129-137
[3]  
Togbé A(2020) and Arch. Math. 56 249-262
[4]  
Baker A(1998)Repdigits in generalized Pell sequences Q. J. Math. Oxf. Ser. (2) 49 291-306
[5]  
Davenport H(2019)A generalization of a theorem of Baker and Davenport Turk. J. Math. 43 2142-2153
[6]  
Bravo JJ(2015)Fibonacci and Lucas numbers as products of two repdigits Ann. Math. 45 55-60
[7]  
Herrera JL(2013)Pell and Pell-Lucas numbers with only one distinct digits Ars Combin. 109 391-403
[8]  
Dujella A(2008)On the usual Fibonacci and generalized order- Eur. J. Combin. 29 701-711
[9]  
Pethő A(2006) Pell numbers Taiwan. J. Math. 10 1661-1670
[10]  
Erduvan F(2000)The Binet formula, sums and representations of generalized Fibonacci Izv. Math. 64 1217-1269