Joint Estimation of States and Parameters for an Input Nonlinear State-Space System with Colored Noise Using the Filtering Technique

被引:1
作者
Xuehai Wang
Feng Ding
机构
[1] Jiangnan University,Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education)
[2] Henan University of Urban Construction,School of Mathematics and Physics
来源
Circuits, Systems, and Signal Processing | 2016年 / 35卷
关键词
Filtering technique; Recursive identification; State estimation; Least squares; State-space model;
D O I
暂无
中图分类号
学科分类号
摘要
This paper concerns the state and parameter estimation problem for an input nonlinear state-space system with colored noise. By using the data filtering and the over-parameterization technique, we transform the original nonlinear state-space system into two identification models with filtered states: one containing the system parameters and the other containing the noise model’s parameters. A combined state and parameter estimation algorithm is developed for identifying the state-space system. The key is that the estimation of system parameters uses the estimated states, and the estimation of states uses the preceding parameter estimates. A simulation example is provided to show that the proposed algorithm can work well.
引用
收藏
页码:481 / 500
页数:19
相关论文
共 118 条
[1]  
Ahmad MS(2011)Recursive inverse adaptive filtering algorithm Digit. Signal Process. 21 491-496
[2]  
Kukrer O(2014)Adaptive distributed estimation based on recursive least-squares and partial diffusion IEEE Trans. Signal Process. 62 3510-3522
[3]  
Hocanin A(1998)An optimal two-stage identification algorithm for Hammerstein–Wiener nonlinear systems Automatica 34 333-338
[4]  
Arablouei R(2004)Convergence of the iterative Hammerstein system identification algorithm IEEE Trans. Autom. Control 49 1929-1940
[5]  
Dogancay K(2011)Identification of process and measurement noise covariance for state and parameter estimation using extended Kalman filter J. Process Control 21 585-601
[6]  
Werner S(2014)Parameter estimation for a dual-rate system with time delay ISA Trans. 53 1368-1376
[7]  
Huang YF(2013)Performance analysis of the auxiliary model-based stochastic gradient parameter estimation algorithm for state space systems with one-step state delay Circuits Syst. Signal Process. 32 585-599
[8]  
Bai EW(2014)Combined state and least squares parameter estimation algorithms for dynamic systems Appl. Math. Model. 38 403-412
[9]  
Bai EW(2014)Hierarchical parameter estimation algorithms for multivariable systems using measurement information Inform. Sci. 277 396-405
[10]  
Li D(2014)State filtering and parameter estimation for state space systems with scarce measurements Signal Process. 104 369-380